188
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Phonocardiogram classification using deep neural networks and weighted probability comparisons

ORCID Icon, &
Pages 510-517 | Received 26 Jun 2018, Accepted 16 Dec 2018, Published online: 18 Feb 2019

References

  • The top 10 causes of death [Internet]. Geneva: World Health Organization; 2016 [cited 2018 Jun 26]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  • Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. Circulation. 2009;119:e391–e479.
  • Adams HP, Del Zoppo G, Alberts MJ, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation. 2007;115:e478–e534.
  • Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–1900.
  • Members AF, Dickstein K, Cohen-Solal A, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart. Eur Heart J. 2008;29:2388–2442.
  • Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–888.
  • Ishmail AA, Wing S, Ferguson J, et al. Interobserver agreement by auscultation in the presence of a third heart sound in patients with congestive heart failure. Chest. 1987;91:870–873.
  • Spiteri MA, Cook DG, Clarke SW. Reliability of eliciting physical signs in examination of the chest. Lancet. 1988;1:873–875.
  • Marcus GM, Gerber IL, McKeown BH, et al. Association between phonocardiographic third and fourth heart sounds and objective measures of left ventricular function. JAMA. 2005;293:2238–2244.
  • Lok CE, Morgan CD, Ranganathan N. The accuracy and interobserver agreement in detecting the 'gallop sounds' by cardiac auscultation. Chest. 1998;114:1283–1288.
  • Ari S, Hembram K, Saha G. Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier. Expert Syst. Appl. 2010;37:8019–8026.
  • Chen Q, Zhang W, Tian X, et al. Automatic heart and lung sounds classification using convolutional neural networks. Proceedings of the 2016 Signal and Information Processing Association Annual Summit and Conference (APSIPA); 2016 Dec 13–15; Jeju (Korea). New York (NY): IEEE; 2016. p. 1–4.
  • Wang Y, Li W, Zhou J, et al. Identification of the normal and abnormal heart sounds using wavelet-time entropy features based on OMS-WPD. Futur Gener Comput Syst. 2014;37:488–495.
  • Deng SW, Han JQ. Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Futur Gener Comput Syst. 2016;60:13–21.
  • Gavrovska A, Zajić G, Reljin I, et al. Classification of prolapsed mitral valve versus healthy heart from phonocardiograms by multifractal analysis. Comput Math Methods Med. 2013;2013:1.
  • Low JX, Choo KW. Automatic classification of periodic heart sounds using convolutional neural network. World Acad Sci Eng Technol Int J Electr Comput Eng. 2018;5:100–105.
  • Quiceno-Manrique AF, Godino-Llorente JI, Blanco-Velasco M, et al. Selection of dynamic features based on time-frequency representations for heart murmur detection from phonocardiographic signals. Ann Biomed Eng. 2010;38:118–137.
  • Randhawa SK, Singh M. Classification of heart sound signals using multi-modal features. Procedia Comput Sci. 2015;58:165–171.
  • Schmidt SE, Holst-Hansen C, Hansen J, et al. Acoustic features for the identification of coronary artery disease. IEEE Trans Biomed Eng. 2015;62:2611–2619.
  • Sinha RK, Aggarwal Y, Das BN. Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation. J Med Syst. 2007;31:205–209.
  • Banerjee R, Choudhury AD, Deshpande P, et al. A robust dataset-agnostic heart disease classifier from phonocardiogram. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:4582–4585.
  • Bouril A, Aleinikava D, et al. Automated classification of normal and abnormal heart sounds using support vector machines. In: Murray A, editor. Proceedings of Computing in Cardiology 2016; 2016 Sep 11–14; Vancouver, Canada. p. 549–552.
  • Zabihi M, Bahrami Rad A, Kiranyaz S, et al. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation. In: Murray A, editor. Proceedings of Computing in Cardiology 2016; 2016 Sep 11–14; Vancouver, Canada. p. 613–616.
  • Zhang W, Han J, Deng S. Heart sound classification based on scaled spectrogram and partial least squares regression. Biomed Signal Process. Control. 2017;32:20–28.
  • Dominguez-Morales JP, Jimenez-Fernandez AF, Dominguez-Morales MJ, et al. Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans Biomed Circuits Syst. 2017;12:1–11.
  • Gonzalez Ortiz JJ, Phoo CP, Wiens J, Heart Sound Classification Based on Temporal Alignment Techniques. 2016; Available from: http://www.cinc.org/archives/2016/pdf/170-317.pdf
  • Langley P, Murray A. Heart sound classification from unsegmented phonocardiograms. Physiol Meas. 2017;38:1658–1670.
  • Maknickas V, Maknickas A. Recognition of normal – abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiol. Meas 2017;38:1671–1684.
  • Potes C, Parvaneh S, Rahman A, et al. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In: Murray A, editor. Proceedings of Computing in Cardiology 2016; 2016 Sep 11–14; Vancouver, Canada. p. 621–624.
  • Rubin J, Abreu R, Ganguli A, et al. Recognizing Abnormal Heart Sounds Using Deep Learning. arXiv Prepr. arXiv1707.04642 [Internet]. 2017; Available from: http://arxiv.org/abs/1707.04642
  • Tschannen M, Kramer T, Marti G, et al. Heart sound classification using deep structured features. In: Murray A, editor. Proceedings of Computing in Cardiology 2016; 2016 Sep 11–14; Vancouver, Canada. p. 565–568.
  • Yang T, Hsieh H. Classification of acoustic physiological signals based on deep learning neural networks with augmented features. 2016 Comput Cardiol Conf. 2016;43:569–572.
  • Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas. 2016;37:2181.
  • Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8:221–223.
  • Springer DB, Tarassenko L, Clifford GD. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng. 2016;63:822–832.
  • Reed TR, Reed NE, Fritzson P. Heart sound analysis for symptom detection and computer-aided diagnosis. Simul Model Pract Theory. 2004;12:129–146.
  • El-Segaier M, Lilja O, Lukkarinen S, et al. Computer-based detection and analysis of heart sound and murmur. Ann Biomed Eng. 2005;33:937–942.
  • Ahlstrom C, Hult P, Rask P, et al. Feature extraction for systolic heart murmur classification. Ann Biomed Eng. 2006;34:1666–1677.
  • Tzanetakis G, Cook P. Musical genre classification of audio signals. IEEE Trans Speech Audio Process. 2002;10:293–302.
  • Clark V, Kruse JA. Ejection clicks. In: Walker H, Hall W, Hurst J, editors. Clinical methods: The history, physics, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. p. 142–143.
  • Devereux RB, Perloff JK, Reichek N, et al. Mitral valve prolapse. Circulation. 1976;54:3–14.
  • Ergen B, Tatar Y, Gulcur HO. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study. Comput Methods Biomech Biomed Engin. 2012;15:371–381.
  • Clifford G, Liu C, Springer D, et al. Classification of Normal/Abnormal Heart Sound Recordings: the PhysioNet/Computing in Cardiology Challenge 2016. 2016;3–6. Available from: http://www.cinc.org/archives/2016/pdf/179-154.pdf
  • Keras [Internet]. San Francisco (CA): GitHub - François Chollet; [cited 2018 Jun 26]. Available from: https://github.com/keras-team/keras
  • Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. OSDI. 2016;16:265–283.
  • Friedman J, Hastie T, Tibshirani R, The elements of statistical learning. New York, NY: Springer series in statistics New York; 2009.
  • Singh M, Cheema A. Heart sounds classification using feature extraction of phonocardiography signal. Int J Comput Apl. 2013;77:13–17. Available from: http://research.ijcaonline.org/volume77/number4/pxc3891001.pdf.
  • Japkowicz N, Stephen S. The class imbalance problem: a systematic study. Intel Data Anal. 2002;6:429–449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.