269
Views
4
CrossRef citations to date
0
Altmetric
Review

Methods of energy generation from the human body: a literature review

, , &
Pages 255-272 | Received 12 Apr 2019, Accepted 04 Aug 2019, Published online: 06 Sep 2019

References

  • Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367.
  • Al-Nabulsi J, Al-Doori H, Salawy N. Human motion to recharge implantable devices. Proceedings of the 10th Jordanian International Electrical and Electronics Engineering Conference (JIEEEC); May 2017; Amman, Jordan. Piscataway (NJ): IEEE; 2017. p. 1–5.
  • Dineva P, Gross D, Müller R, et al. Dynamic fracture of piezoelectric materials: solution of time-harmonic problems via BIEM. Basel, Switzerland: pringer Science & Business Media; 2014. Volume 212; p. 7–32.
  • Dagdeviren C, Joe P, Tuzman O, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mech Lett. 2016;9:269–281.
  • Qi Y, McAlpine M. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci. 2010;3:1275.
  • Roundy S, Wright P. A piezoelectric vibration-based generator for wireless electronics. Smart Mater Struct. 2004;13:1131–1142.
  • Pillatsch P, Yeatman E, Holmes A. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensor Actuat A Phys. 2014;206:178–185.
  • Hwang G, Kim Y, Lee J, et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ Sci. 2015;8:2677–2684.
  • Midov D, Katerska B. Some biocompatible materials used in medical practice. Trakia J Sci. 2010;8:119–125.
  • Onuki Y, Bhardwaj U, Papadimitrakopoulos F, et al. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2:1003–1015.
  • Leonov V, Vullers R. Wearable thermoelectric generators for body-powered devices. J Electron Mater. 2009;38:1491–1498.
  • Leonov V. Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew Energy. 2011;2011:1–11.
  • Hyland M, Hunter H, Liu J, et al. Wearable thermoelectric generators for human body heat harvesting. Appl Energy. 2016;182:518–524.
  • Kishi M, Nemoto H, Hamao T, et al. Micro thermoelectric modules and their application to wristwatches as an energy source. Proceedings 18th ICT; Piscataway (NJ): IEEE; 1999. p. 301–307.
  • Torfs T, Leonov V, Yazicioglu F, et al. Wearable autonomous wireless electro-encephalography system fully powered by human body heat. Proceedings of IEEE Sensors, Lecce, Italy; Oct 2008; Piscataway (NJ): IEEE; 2006. p. 1269–1272.
  • Torfs T, Leonov V, Hoof C, IEEE Sensors, et al. Body-heat powered autonomous pulse oximeter. Proceedings of the 5th IEEE Conference on Sensors; Oct 2006; Piscataway (NJ): IEEE; 2006. p. 427–430.
  • Wang Z, Leonov V, Fiorini P, et al. Realization of a wearable miniaturized thermoelectric generator for human body applications. Sensor Actuat A Phys. 2009;156:95–102.
  • Kim S, We J, Cho B. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci. 2014;7:1959.
  • Thielen M, Sigrist L, Magno M, et al. Human body heat for powering wearable devices: from thermal energy to application. Energy Convers Manage. 2017;131:44–54.
  • Leonov V, Vullers R. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J Renew Sustain Energy. 2009;1:062701.
  • Leonov V, Torfs T, Hoof C, et al. Smart wireless sensors integrated in clothing: an electrocardiography system in a shirt powered using human body heat. Sensor Transducer J. 2009;107:165–176.
  • Bhatia D, Bairagi S, Goel S, et al. Pacemakers charging using body energy. J Pharm Bioall Sci. 2010;2:51.
  • Lu Z, Layani M, Zhao X, et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small. 2014;10:3551–3554.
  • Weijand K, Combs P, Greeninger D, Houben R. Body heat powered implantable medical devices. United States patent US 6,470,212. 2002 Oct 22.
  • Mitcheson P. Energy harvesting for human wearable and implantable biosensors. Proceedings of IEEE Conference Engineering in Medicine and Biology Society; Buenos Aires, Argentina. Piscataway (NJ): IEEE; 2010. p. 3432–3436.
  • Leonov V. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensor J. 2013;13:2284–2291.
  • Lu Z, Zhang H, Mao C, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl Energy. 2016;164:57–63.
  • Jo S, Kim M, Kim M, et al. Flexible thermoelectric generator for human body heat energy harvesting. Electron Lett. 2012;48:1015–1017.
  • Leonov V, Torfs T, Fiorini P, et al. Thermoelectric converters of human warmth for selfpowered wireless sensor nodes. IEEE Sensor J. 2007;7:650–657.
  • Leonov V, Vullers M. Thermoelectric generators on living beings. Proceedings of the 5th European Conference on Thermoelectrics (ECT 07); Sep 2007; Odessa, Ukraine. 2007. p. 47–52.
  • Hoang C, Tan K, Chng B, et al. Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system. Proceedings of the International Conference Power Electronics and Drive Systems IEEE; Piscataway (NJ): IEEE; 2009. p. 1277–1282.
  • Mateu L, Codrea C, Lucas N, et al. Human body energy harvesting thermogenerator for sensing applications. Proceedings of International Conference on Sensor Technology Application; Oct 2007; Valencia, Spain. Piscataway (NJ): IEEE; 2007. p. 366–372.
  • Hmida G, Ekuakille A, Kachouri A, et al. Extracting electric power from human body for supplying neural recording system. Int J Smart Sens Intell Syst. 2009;2:229–245.
  • Starner T. Human-powered wearable computing. IBM Syst J. 1996;35:618–629.
  • Niu P, Chapman P, Riemer R, et al. Evaluations of motions and actuation methods for biomechanical energy harvesting. Proceedings of the IEEE Power Electronic Specialists Conference; Jun 2004; Berlin, Germany. Piscataway (NJ): IEEE; 2004. p. 2100–2106.
  • Riemer R, Shapiro A. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J NeuroEng Rehabil. 2011;8:22.
  • Sahara G, Hijikata W, Tomioka K, et al. Implantable power generation system utilizing muscle contractions excited by electrical stimulation. Proc Inst Mech Eng H. 2016;230:569–578.
  • Chamanian S, Uluşan H, Zorlu Ö, et al. Wearable battery-less wireless sensor network with electromagnetic energy harvesting system. Sens Actuat A Phys. 2016;249:77–84.
  • Zhu G, Lin Z, Jing Q, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013;13:847–853.
  • Schertzer E, Riemer R. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location. Appl Ergon. 2014;45:1422–1432.
  • Givoni B, Goldman R. Predicting metabolic energy cost. J Appl Physiol. 1971;30:429–433.
  • Pandolf KB, Givoni B, Goldman RF. Predicting energy expenditure with loads while standing or walking very slowly. J Appl Physiol Respir Environ Exerc Physiol. 1977;43:577–581.
  • Zhao J, You Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors. 2014;14:12497–12510.
  • Kymissis J, Kendall C, Paradiso J, et al. Parasitic power harvesting in shoes. Proceedings of 2nd IEEE International Conference Wearable Computing (California); Piscataway (NJ): IEEE; 1998. p. 132–139.
  • Camilloni E, DeMaso-Gentile G, Scavongelli C, et al. Piezoelectric energy harvesting on running shoes. In: Conti M, Martínez Madrid N, Seepold R, Orcioni S, editors. Mobile networks for biometric data analysis. Lecture notes in electrical engineering. Vol. 392. Cham, Switzerland: Springer International Publishing; 2016. p. 91–107.
  • Ylli K, Hoffmann D, Willmann A, et al. Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater Struct. 2015;24:025029.
  • Shenck N, Paradiso J. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 2001;21:30–42.
  • Face B. Footwear incorporating piezoelectric energy harvesting system. United States patent application US 11/184588. 2006 Feb 2.
  • Romero E, Warrington R, Neuman M. Body motion for powering biomedical devices. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Jan 2009. Piscataway (NJ): IEEE; 2009 p. 2752–2755.
  • Pelrine R, Kornbluh R. Electroactive polymer devices. United States patent US 6545384. 2003 Apr 8.
  • Chen S. Dynamoelectric shoes. United States patent US5495682. 1996 Mar 5.
  • Hayashida J. Unobtrusive integration of magnetic generator systems into common footwear [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2000.
  • Kornbluh RD, Pelrine R, Pei Q, et al. 34 electroelastomers: application of dielectric elastomer transducers for actuation, generation, and smart structures. SPIE's 9th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, San Diego, California, United States; 2002. p. 254–270.
  • Pozzi M. Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester. Smart Mater Struct. 2016;25:045008.
  • Li Q, Naing V, Donelan M. Development of a biomechanical energy harvester. J Neuroeng Rehabil. 2009;6:22.
  • Pozzi M, Zhu M. Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation. Smart Mater Struct. 2011;20:055007.
  • Pozzi M, Zhu M. Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater Struct. 2012;21:055004.
  • Pozzi M, Almond H, Leighton G, et al. Low-profile and wearable energy harvester based on plucked piezoelectric cantilevers. Proceedings SPIE:9517951706–9; Barcelona, Spain, 2015.
  • Kuang Y, Ruan T, Chew Z, et al. Energy harvesting during human walking to power a wireless sensor node. Sensor Actuat A Phys. 2017;254:69–77.
  • Shepertycky M, Li Q. Generating electricity during walking with a lower limb-driven energy harvester: targeting a minimum user effort. PLoS One. 2015;10:e0127635.
  • Donelan JM, Li Q, Naing V, et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science. 2008;319:807–810.
  • Rome L, Flyann L, Goldman M, et al. Generating electricity while walking with loads. Science. 2005;309:1725–1728.
  • Granstrom J, Feenstra J, Sodano H, et al. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct. 2007;16:1810–1820.
  • Kuo A. Biophysics. Harvesting energy by improving the economy of human walking. Science. 2005;309:1686–1687.
  • Yang W, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking. ACS Nano. 2013;7:11317–11324.
  • Saha C, O’Donnell T, Wang N, et al. Electromagnetic generator for harvesting energy from human motion. Sensor Actuat A Phys. 2008;147:248–253.
  • Niu P, L CP, DiBerardino L, et al. Design and optimization of a biomecanichal energy harvesting device. Power Electronics Specialists Conference, PESC 2008; Jan 2008. Piscataway (NJ): IEEE; 2008. p. 4062–4069.
  • González JL, Rubio A, Moll F. Human powered piezoelectric batteries to supply power to wearable electronic devices. Int J Soc Mater Eng Resour. 2002;10:34–40.
  • Zhong J, Zhong Q, Fan F, et al. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy. 2013;2:491–497.
  • Karagozler M, Poupyrev I, Fedder K, et al. Paper generators: harvesting energy from touching, rubbing and sliding. Proceedings 26th Annual ACM Symposium User Interface Software and Technology (UIST 13); New York (NY): ACM; 2013. p. 23–30.
  • Renaud M, Sterken T, Fiorini P, et al. Scavenging energy from human body: design of a piezoelectric transducer. Proc. Tech. Dig. 13th Int. Conf. Solid-State Sens. Actuators Transducers, Vol. 1, June 5-9; Seoul, Korea. 2005. p. 784–787.
  • Renaud M, Fiorini P, van Schaijk R, et al. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct. 2009;18:035001.
  • Maharjan P, Toyabur R, Park J. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy. 2018;46:383–395.
  • Thangaraju S, Sakthivel S, Chaudhary V, Inventors; HCL Technologies Ltd, assignee. System and method for generating electric charges from heart to power implantable medical devices. United States patent US 9,867,993. 2018 Jan 16.
  • Amin M, Inman D. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett. 2012;100:042901.
  • Dagdeviren C, Yang B, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA. 2014;111:1927–1932.
  • Zurbuchen A, Pfenniger A, Stahel A, et al. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann Biomed Eng. 2013;41:131–141.
  • Ansari M, Karami M. Piezoelectric energy harvesting from heartbeat vibrations for leadless pacemakers. J Phys Conf Ser. 2015;660:012121.
  • Hwang G, Park H, Lee J, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater. 2014;26:4880–4887.
  • Zhang H, Zhang X, Cheng X, et al. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy. 2015;12:296–304.
  • Kim C, Yang H, Lee J, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 2018;3:501–507.
  • Dong L, Han X, Xu Z, et al. Energy harvesting: flexible porous piezoelectric cantilever on a pacemaker lead for compact energy harvesting advanced materials technologies. Adv Sci. 2019;4:1970002.
  • Hunt R. Chest motion electricity generating device. United States patent US 4245649. 1981 Jan 20.
  • StarPner T. Aradiso JA. Human generated power for mobile electronics In: Piguet C, editor. Low power electronics design. Boca Raton (FL): CRC Press; 2004. p. 1–35.
  • Häsler E, Stein L, Harbauer G. Implantable physiological power supply with PVDF film. Ferroelectrics. 1984;60:277–282.
  • Zheng Q, Shi B, Fan F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater. 2014;26:5851–5856.
  • Sultana A, Alam M, Middya T, et al. A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Appl Energy. 2018;221:299–307.
  • Bandodkar A, Jia W, Wang J. Tattoo-based wearable electrochemical devices: a review. Electroanalysis. 2015;27:562–572.
  • Derbyshire P, Barr H, Davis F, et al. Lactate in human sweat: a critical review of research to the present day. J Physiol Sci. 2012;62:429–440.
  • Jia W, Bandodkar A, Valdés-Ramírez G, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem. 2013;85:6553–6560.
  • Jia W, Valdés-Ramírez G, Bandodkar A, et al. Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem. 2013;125:7374–7377.
  • Yang Y, Zhang H, Lin Z, et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano. 2013;7:9213–9222.
  • Dagdeviren C, Li Z, Wang Z. Energy harvesting from the animal/human body for self-powered electronics. Annu Rev Biomed Eng. 2017;19:85–108.
  • Bullen RA, Arnot TC, Lakeman JB, et al. Biofuel cells and their development. Biosens Bioelectron. 2006;21:2015–2045.
  • Justin GA, Zhang Y, Sun M, et al. An investigation of the ability of white blood cells to generate electricity in biofuel cells. Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference; April 2005; Hoboken, NJ. Piscataway (NJ): IEEE; 2005. p. 277–278.
  • Justin G, Sun M, Zhang Y, et al. Serotonin (5-HT) released by activated white blood cells in a biological fuel cell provide a potential energy source for electricity generation. Conf Proc IEEE Eng Med Biol Soc. 2006;1:4115–4118.
  • Pan C, Fang Y, Wu H, et al. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv Mater. 2010;22:5388.
  • Mori T, Priya S. Materials for energy harvesting: at the forefront of a new wave. MRS Bull. 2018;43:176–180.
  • Schertzer E, Riemer R. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power. J NeuroEng Rehabil. 2015;12:30.
  • Lee S, Shi Q, Lee C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019;7:031302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.