312
Views
37
CrossRef citations to date
0
Altmetric
Innovations

Towards classifying non-segmented heart sound records using instantaneous frequency based features

ORCID Icon
Pages 418-430 | Received 12 Jun 2019, Accepted 30 Oct 2019, Published online: 26 Nov 2019

References

  • Hanna IR, Silverman ME. A history of cardiac auscultation and some of its contributors. Am J Cardiol. 2002;90(3):259–267.
  • Degbedzui DK, Tetteh M, Kaufmann EE, et al. Bluetooth-based wireless digital stethoscope with mobile integration.” Biomed Eng Appl Basis Commun. 2018;30(03):1850010.
  • Kumar D, Carvalho P, Antunes M, et al. Wavelet transform and simplicity based heart murmur segmentation. Proceedings from the 2006 Computers in CardiologyConference. Sept 17–20, Valencia, Spain. 2006.
  • Oweis RJ, Hamad H, Shammout M. Heart sounds segmentation utilizing Teager energy operator. J Med Imaging Hlth Inform. 2014;4(4):488–499.
  • Yadav A, Dutta MK, Travieso CM, et al. Automatic Classification of Normal and Abnormal PCG Recording Heart Sound Recording Using Fourier Transform. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI). July 18–20, San Carlos, Costa Rica. 2018.
  • Nabih-Ali M, El-Dahshan E-SA, Yahia AS. A review of intelligent systems for heart sound signal analysis. J Med Engin Technol. 2017;41(7):553–563.
  • Homsi MN, Medina N, Hernandez M, et al. Automatic heart sound recording classification using a nested set of ensemble algorithms. 2016 Computing in Cardiology Conference (CinC). Sept 11–14, Vancouver, Canada. 2016.
  • Clifford GD, Liu C, Moody B, et al. Recent advances in heart sound analysis. Physiol Meas. 2017;38(8):E10–E25.
  • Kumar D, Carvalho P, Antunes M, et al. “An Adaptive approach to abnormal heart sound segmentation.” 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 22–27, Prague, Czech Republic. 2011.
  • Çomak E, Arslan A, Türkoğlu İ. A decision support system based on support vector machines for diagnosis of the heart valve diseases. Comput Biol Med. 2007;37(1):21–27.
  • Andrisevic N, Ejaz K, Rios-Gutierrez F, et al. Detection of heart murmurs using wavelet analysis and artificial neural networks. J Biomech Engin. 2005;127(6):899–904.
  • Javed F, Venkatachalam PA, Ahmad Fadzil MH. A signal processing module for the analysis of heart sounds and heart murmurs. J Phys Conf Ser. 2006;34(1):1098.
  • Potes C, Parvaneh S, Rahman A, et al. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. 2016 Computing in Cardiology Conference (CinC). Sept 11–14, Vancouver, Canada. 2016.
  • Varghees VN, Ramachandran KI. Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope. IEEE Sensors J. 2017;17(12):3861–3872.
  • Yuenyong S, Nishihara A, Kongprawechnon W, et al. A framework for automatic heart sound analysis without segmentation. BioMed Eng OnLine. 2011;10(1):13.
  • Wang Y, Li W, Zhou J, et al. Identification of the normal and abnormal heart sounds using wavelet-time entropy features based on OMS-WPD. Future Gener Comput Syst. 2014;37:488–495.
  • Deng S-W, Han J-Q. Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Gener Comput Syst. 2016;60:13–21.
  • Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas. 2016;37(12):2181.
  • Son G-Y, Kwon S. Classification of heart sound signal using multiple features. Appl Sci. 2018;8(12):2344.
  • Malarvili MB, et al. Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. Computers in Cardiology, 2003. Sept 21–24, Thessaloniki, Greece. 2003.
  • Tsiakoulis P, Potamianos A, Dimitriadis D. Short-time instantaneous frequency and bandwidth features for speech recognition. 2009 IEEE Workshop on Automatic Speech Recognition & Understanding. Nov 13–Dec 17, Merano, Italy. 2009.
  • Al-Zaben A, Al-Qura'n H, Abu-Qasmieh I. “Enhanced segmentation of EOG signals.” 2011 1st Middle East Conference on Biomedical Engineering. Feb 21–24, Sharjah, UAE. 2011.
  • Sokolowski J, Obuchowski J, Madziarz M, et al. Features based on instantaneous frequency for seismic signals clustering. J Vibroeng. 2016;18(3):1654–1667.
  • Al-Amri M, Hamidon MN, Rasid MFA, et al. “The characteristics of Korotkoff sounds using the instantaneous frequency method.” Proceedings of the 6th Conference on 6th WSEAS International Conference on Signal Processing-Volume 6. World Scientific and Engineering Academy and Society (WSEAS). Mar 22–24, Dallas, Texas. 2007.
  • Boashash B. Time-frequency and instantaneous frequency concepts. In: Time frequency signal analysis and processing. 2nd edition. London, UK: Elsevier; 2016. pp. 31–63.
  • Boashash B. Estimating and interpreting the instantaneous frequency of a signal – Part 1: fundamentals. Proc IEEE. 1992;80(4):520–538.
  • Boashash B. Estimating and interpreting the instantaneous frequency of a signal – Part 2: algorithms and applications. Proc IEEE. 1992;80(4):540–568.
  • Giannakopoulos T, Pikrakis A. Introduction to audio analysis: a MATLAB® approach. London, UK: Academic Press; 2014.
  • Alquran H, Qasmieh IA, Alqudah AM, et al. The melanoma skin cancer detection and classification using support vector machine. 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT). Oct 11–13, Aqaba, Jordan. 2017.
  • Alqudah AM, Albadarneh A, Abu-Qasmieh I, et al. Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features. Australas Phys Eng Sci Med. 2019;42(1):149–157.
  • Breiman L. Bagging predictors. Mach Learn. 1996;26:123–140.
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
  • Breiman L. Random forests. https://www.stat.berkeley.edu/users/breiman/RandomForests/
  • Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Exp Syst Appl. 2011;38(10):13475–13481.
  • Alqudah AM, Alquraan H, Abu-Qasmieh I, et al. Employing image processing techniques and artificial intelligence for automated eye diagnosis using digital eye fundus images. J Biomimet Biomater Biomed Engin. 2018;39:40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.