184
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A multimodal MR-compatible olfactometer with real-time controlling capability

, , , , & ORCID Icon
Pages 317-323 | Received 08 Mar 2020, Accepted 17 Jun 2020, Published online: 23 Jul 2020

References

  • Bensafi M, Rouby C, Farget V, et al. Perceptual, affective, and cognitive judgments of odors: pleasantness and handedness effects. Brain Cogn. 2003;51(3):270–275.
  • Nieminen V, Karjalainen M, Salminen K, et al. A compact olfactometer for IMS measurements and testing human perception. Int J Ion Mobil Spec. 2018;21(3):71–110.
  • Doty RL, Reyes PF, Gregor T. Presence of both odor identification and detection deficits in Alzheimer's disease. Brain Res Bull. 1987;18(5):597–600.
  • Hedner M, Larsson M, Arnold N, et al. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol. 2010;32(10):1062–1067.
  • Richardson BE, Vander Woude EA, Sudan R, et al. Altered olfactory acuity in the morbidly obese. Obes Surg. 2004;14(7):967–969.
  • Manara R, Salvalaggio A, Favaro A, et al.; Kallmann Syndrome Neuroradiological Study Group. Brain changes in Kallmann syndrome. AJNR Am J Neuroradiol. 2014;35(9):1700–1706.
  • Caffo BS, Crainiceanu CM, Verduzco G, et al. Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk. Neuroimage. 2010;51(3):1140–1149.
  • Moon WJ, Park M, Hwang M, et al. Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. AJNR Am J Neuroradiol. 2018;39(12):2320–2325.
  • Ferdon S, Murphy C. The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage. 2003;20(1):12–21.
  • Cerf-Ducastel B, Murphy C. Age-related differences in the neural substrates of cross-modal olfactory recognition memory: an fMRI investigation. Brain Res. 2009;1285:88–98.
  • Suzuki Y, Critchley HD, Suckling J, et al. Functional magnetic resonance imaging of odor identification: the effect of aging. J Gerontol A Biol Sci Med Sci. 2001;56(12):M756–M760.
  • Smejkal V, Druga R, Tintera J. Olfactory activity in the human brain identified by fMRI. Bratisl Lek Listy. 2003;104(6):184–188.
  • Wang J, Sun X, Yang QX. Methods for olfactory fMRI studies: implication of respiration. Hum Brain Mapp. 2014;35(8):3616–3624.
  • Koritnik B, Azam S, Andrew CM, et al. Imaging the brain during sniffing: a pilot fMRI study. Pulm Pharmacol Ther. 2009;22(2):97–101.
  • Sobel N, Prabhakaran V, Desmond JE, et al. A method for functional magnetic resonance imaging of olfaction. J Neurosci Methods. 1997;78(1–2):115–123.
  • Lowen SB, Lukas SE. A low-cost, MR-compatible olfactometer. Behav Res Methods. 2006;38(2):307–313.
  • Kobal G, Hummel C. Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalogr Clin Neurophysiol*/Evoked Potentials Section. 1988;71(4):241–250.
  • Kettenmann B, Hummel C, Stefan H, et al. Multiple olfactory activity in the human neocortex identified by magnetic source imaging. Chem Senses. 1997;22(5):493–502.
  • Walker JC, Kurtz DB, Shore FM, et al. Apparatus for the automated measurement of the responses of humans to odorants. Chem Senses. 1990;15(2):165–177.
  • Liu B, Şengonca C. Development of 8-armed airflow olfactometers for measuring olfactory responses of insect predators. Anz Schadlingskde, Pflanzenschutz, Umweltschutz. 1994;67(2):30–34.
  • Owens JG, James RA, Moss OR, et al. Design and evaluation of an olfactometer for the assessment of 3-methylindole-induced hyposmia. Fundam Appl Toxicol. 1996;33(1):60–70.
  • Valdez LF, Gutierrez JM, editors. Portable olfactometric platform. Tokyo: Institute of Electrical and Electronics Engineers Inc.; 2016.
  • Hummel T, Sekinger B, Wolf SR, et al. Sniffin' sticks': olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses. 1997;22(1):39–52.
  • Benignus VA, Prah JD. A computer-controlled vapor-dilution olfactometer. Behav Res Methods Instrument. 1980;12(5):535–540.
  • De Wijk RA, Vaessen W, Heidema J, et al. An injection olfactometer for humans and a new method for the measurement of the shape of the olfactory pulse. Behav Res Methods Instrum Comput. 1996;28(3):383–391.
  • Owen C, Patterson J, Simpson DG. Development of a continuous respiration olfactometer for odorant delivery synchronous with natural respiration during recordings of brain electrical activity. IEEE Trans Biomed Eng. 2002;49(8):852–858.
  • Lorig TS, Elmes DG, Zald DH, et al. A computer-controlled olfactometer for fMRI and electrophysiological studies of olfaction. Behav Res Methods Instrum Comput. 1999;31(2):370–375.
  • Pöllinger A, Herminghaus S, Hacker H, et al. Functional imaging during olfactory stimulation. Riv Neuroradiol. 1998;11(2_suppl):165–166.
  • Wu KN, Tan BK, Howard JD, et al. Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex. Nat Neurosci. 2012;15(9):1313–1319.
  • Sezille C, Messaoudi B, Bertrand A, et al. A portable experimental apparatus for human olfactory fMRI experiments. J Neurosci Methods. 2013;218(1):29–38.
  • Johnson BN, Sobel N. Methods for building an olfactometer with known concentration outcomes. J Neurosci Methods. 2007;160(2):231–245.
  • Lundström JN, Gordon AR, Alden EC, et al. Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments. Int J Psychophysiol. 2010;78(2):179–189.
  • Kobal G. Elektrophysiologische Untersuchungen des menschlichen Geruchssinns. Stuttgart, New York: Thieme; 1981.
  • Turlings TCJ, Davison AC, Tamò C. A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiol Entomol. 2004;29(1):45–55.
  • Bestgen A-K, Schulze P, Kuchinke L, et al. An extension of olfactometry methods: an expandable, fully automated, mobile, MRI-compatible olfactometer. J Neurosci Methods. 2016;261:85–96.
  • Sommer JU, Maboshe W, Griebe M, et al. A mobile olfactometer for fMRI-studies. J Neurosci Methods. 2012;209(1):189–194.
  • Karunanayaka K, Saadiah H, Shahroom H, David Cheok A, editors. Methods to develop a low cost laboratory olfactometer for multisensory, psychology, and neuroscience experiments. Piscataway, NJ: Institute of Electrical and Electronics Engineers Inc; 2017.
  • Andrieu P, Bonnans V, Meneses J, et al. A modular, computer-controlled system for olfactory stimulation in the MRI environment. Behav Res Methods. 2014;46(1):178–184.
  • Perritt DW, Couger G, Barker RW. Computer-controlled olfactometer system for studying behavioral responses of ticks to carbon dioxide. J Med Entomol. 1993;30(3):571–578.
  • Lowen SB, Farmer SL, Lukas SE. Improved low-cost, MR-compatible olfactometer to deliver tobacco smoke odor. Behav Res Methods. 2017;49(1):74–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.