393
Views
7
CrossRef citations to date
0
Altmetric
Innovations

Estimation of mass apparent density and Young’s modulus of femoral neck-head region

&
Pages 378-388 | Received 13 Feb 2020, Accepted 06 Jul 2020, Published online: 04 Sep 2020

References

  • Knudson D. Fundamentals of biomechanics 2nd ed. New York: Springer Publication; 2007.
  • Klika V. Theoretical biomechanics. Coratia: In Tech Publishers; 2011.
  • Keyak JH, Rossi SA, Jones KA, et al. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. 2001;23(9):657–664.
  • Laz PJ, Stowe JQ, Baldwin MA, et al. Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics. J Biomech. 2007;40(13):2831–2836.
  • Fedida R, Yosibash Z, Milgrom C, et al. 2005. Femur mechanical simulation using high-order FE analysis with continuous mechanical properties. Proceedings of ICCB05 - II International conference on computational bioengineering. Lisbon, Portugal: IST Press 1:85–96.
  • Dragomir-Daescu D, Op Den Buijs J, Mceligot S, et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the Hip. Ann Biomed Eng. 2011;39(2):742–755.
  • Helgason B, Perilli E, Schileo E, et al. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon)). 2008;23(2):135–146.
  • Op Den Buijs J, Dragomir-Daescu D. Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput Methods Programs Biomed. 2011;104(2):168–174.
  • Nishiyama KK, Gilchrist S, Guy P, et al. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech. 2013;46(7):1231–1236.
  • Munckhof Sven van den,  Zadpoor AA. How accurately can we predict the fracture load of the proximal femur using finite element models? Clin Biomech (Bristol, Avon)). 2014;29(4):373–380.
  • Schileo E, Balistreri L, Grassi L, et al. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J Biomech. 2014;47(14):3531–3538.
  • Mirzaei M, Keshavarzian M, Alavi F, et al. QCT‑based failure analysis of proximal femurs under various loading orientations. Med Biol Eng Comput. 2015;53(6):477–486.
  • Sitzer A, Wendlandt R, Barkhausen J, et al. Determination of material properties related to quantitative CT in human femoral bone for patient specific finite element analysis - A comparison of material laws. WebmedCentral Orthopaed. 2012;3(3):1–11.
  • Snyder S M, Schneider E. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 1991;9(3):422–431.
  • Cyganik L, Binkowski M, Kokot G, et al. Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. J Mech Behav Biomed Mater. 2014;36:120–134.
  • Chen G, Schmutz B, Epari D, et al. A new approach for assigning bone material properties from CT images into finite element models. J Biomech. 2010;43(5):1011–1015.
  • Belaid D, Bouchoucha A. 2015. Modeling of the mechanical behavior of the human femur: stress analysis and strain. ICCMSE, American Institute of Physics conference proceeding 1702, 190023: p. 1–4.
  • Fonseca EMM, Lima MJ, Barreira LMS. 2009. Human femur assessment using isotropic and orthotropic materials dependent of bone density, 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, Paper Ref: S1904_P0345.
  • Spratt JD, Salkowski LR, Loukas M, et al. 2017. Weir & Abrahams' imaging atlas of human anatomy. 5th ed. London (UK): Elsevier.
  • Bártolo PJ, Bidanda B. 2008. Bio-materials and prototyping applications in medicine. US: Springer Science.
  • Hambli R, Allaoui S. A Robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng. 2013;41(12):2515–2527.
  • Adams G J, Cook R B, Hutchinson J R, et al. Bone apparent and material densities examined by cone beam computed tomography and the archimedes technique: coMparison of the two methods and their results. Front Mech Eng. 2018;3(23):1–9.
  • Rho J Y, Hobatho M C, Ashman R B. Relations of mechanical properties to density and CT numbers in human Bone. Med Eng Phys. 1995;17(5):347–355.
  • Rezaei A, Carlson K D, Giambini H, et al. Optimizing accuracy of proximal femur elastic modulus equations. Ann Biomed Eng. 2019;47(6):1391–1399.
  • Izzawati B, Daud R, Afendi M, et al. Convergence and stress analysis of the homogeneous structure of human femur bone during standing up condition. 3rd EGM conference. American Institute of Physics; 2017 p. 1–7.
  • Hamandi F, Goswami T. Macrodamage accumulation model for a human femur. Appl Bionics Biomech. 2017;2017:4539178–4539119.
  • Painkra R, Sanyal S, Bit A. An anisotropic analysis of human femur bone with walking posture: experimental and numerical analysis. BioNanoSci. 2018;8(4):1054–1064.
  • Liu X S, Cohen A, Shane E, et al. Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res. 2010;25(10):2229–2238.
  • Wirtz D C, Schiffers N, Pandorf T, et al. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech. 2000;33(10):1325–1330.
  • Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.
  • Banse X, Delloye C, Cornu O, et al. Comparative left-right mechanical testing of cancellous bone from normal femoral heads. J Biomech. 1996;29(10):1247–1253.
  • Geraldes D M, Phillips AT. A comparative study of orthotropic and isotropic bone adaptation in the femur. Int J Numer Method Biomed Eng. 2014;30(9):873–889.
  • Vesenjak M, Matela J, Young P, et al. Imaging, virtual reconstruction and computational material (tissue) testing. Acta Medico-Biotechnica. 2009;2:19–30.
  • Akrami M, Craig K, Dibaj M, et al. A three-dimensional finite element analysis of the human hip. J Med Eng Technol. 2018;42(7):546–552.
  • Genc KO, Cavanagh PR. 2012. A Modeling Framework for Examining Changes in Femoral Strength due to Long Duration Bedrest. 36th Annual meeting, American Society of Biomechanics; Gainesville, FL.
  • Marco M, Giner E, Larraínzar R, et al. Analysis of mechanical behavior variation in the proximal femur using X-FEM (Extended Finite Element Method). Rev Osteoporos Metab Miner. 2016;8(2):61–69.
  • Kim H S, Park J Y, Kim N E, et al. Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication. J Adv Prosthodont. 2012;4(4):218–226.
  • Young P G, Beresford-West T B H, Coward S R L, et al. An efficient approach to converting three-dimensional image data into highly accurate computational models. Philos Trans A Math Phys Eng Sci. 2008;366(1878):3155–3173.
  • Ricardo D, Vincent D, António R, et al. Development of a relevant image processing method to characterize the distribution of tissue within a bone structure. J Comp Sci Syst Biol. 2015;8(4):199–202.
  • Liebschner M A. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials. 2004;25(9):1697–1714.
  • Pearce A I, Richards R G, Milz S, et al. Animal models for implant biomaterial research in bone: A review. Eur Cell Mater. 2007;13:1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.