130
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Low delay rate adaptive pacemaker using FPGA embedded piezoelectric sensor

ORCID Icon, , , ORCID Icon, &
Pages 423-430 | Received 27 Apr 2020, Accepted 06 Jul 2020, Published online: 04 Sep 2020

References

  • Kaur A, Kaur A. Design and analysis of a dual chamber cardiac pacemaker using VHDL in biomedical application. IJRITCC. 2009;2:2007–2009.
  • Ai W, Patel ND, Roop PS, et al. Closing the loop : validation of implantable cardiac devices with computational heart models. IEEE J Biomed Health Inform. 2020;24:1579–1588.
  • Ai W, Patel ND, Roop PS, et al. A parametric computational model of the action potential of pacemaker cells. IEEE Trans Biomed Eng. 2018;65:123–130.
  • Arzuaga P. Cardiac pacemakers: past, present and future. IEEE Instrum Meas Mag. 2014;17:21–27.
  • Shi WV, Zhou M. Optimal single-pulse for pacemakers based on a sinoatrial model. IEEE/ASME Trans Mechatron. 2013;18:348–354.
  • Rosenqvist M, Brandt J, Schüller H. Long-term pacing in sinus node disease: effects of stimulation mode on cardiovascular morbidity and mortality. Am Heart J. 1988;116:16–22.
  • Khandpur RS. Biomedical Instrumentation. New York (NY): McGraw-Hill Education; 2003. Automated drug delivery systems; p. 870–884.
  • Bhatia N, El-Chami M. Leadless pacemakers : a contemporary review. J Geriatr Cardiol. 2018;15:249–253.
  • Roopa T, Manjula BM, Chirag S. Implementation of a pacemaker for biomedical application. Int J Sci Res. 2014;3:2780–2785.
  • Dwivedi O, Srivastava G. Design and implementation of programmable cardiac pacemaker using VHDL. Int J Eng Res Appl. 2015;5:155–158.
  • Panda A. VLSI implementation of a demand mode dual chamber rate responsive cardiac pacemaker. Rourkela (India): National Institute of Technology; 2012.
  • Kollam M, Pranesh S, Raghavendra A. Implementation of a demand mode responsive cardiac pacemaker. IJEIT. 2012;2:113–117.
  • Mostafa S, John EB, Panday MM. Design and implementation of an ultra-low energy FFT ASIC for processing ECG in cardiac pacemakers. IEEE Trans Very Large Scale Integr VLSI Syst. 2019;27:983–987.
  • Xu L, Zhang H, Yao K. The analysis and design of diphasic pacemaker pulse system based on microcontroller. Proceedings of the World Congress on Intelligent Control and Automation (WCICA); 2012 Jul 6–8; Beijing, China. p. 1192–1195.
  • Ray S, Sharma M, Srivastava R. Implementation of low delay dual chamber pacemaker using verilog. Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); 2019 Mar 7–8; Nioda, India. p. 59–62.
  • Bose P, Khaleghi A, Mahmood S, et al. Evaluation of data telemetry for future leadless cardiac pacemaker. IEEE Access. 2019;7:157933–157945.
  • Kainz W, Casamento JP, Ruggera PS, et al. Implantable cardiac pacemaker electromagnetic compatibility testing in a novel security system simulator. IEEE Trans Biomed Eng. 2005;52:520–530.
  • Bereuter L, Kuenzle T, Niederhauser T, et al. Fundamental characterization of conductive intracardiac communication for leadless multisite pacemaker systems. IEEE Trans Biomed Circuits Syst. 2019;13:237–247.
  • Eggen MD, Grubac V, Bonner MD. Design and evaluation of a novel fixation mechanism for a transcatheter pacemaker. IEEE Trans Biomed Eng. 2015;62:2316–2323.
  • Noren K, inventor. Multi-sensor system for controlling an implantable heart stimulator. United States Patent US 6,792,309 B1. 2004 Sep 14.
  • Agarwal K, Jegadeesan R, Guo Y-X, et al. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev Biomed Eng. 2017;10:136–161.
  • Alt E, Stotts LJ. Programmably upgradable implantable cardiac pacemaker. US 6,073,049. 1943.
  • Lekholm A. Rate-responsive pacemaker with circuitry for processing multiple sensor inputs. US 5,097,831. 1993.
  • Amundson D. Cardiac pacer for pacing a human heart and pacing method. US 4,722,342. 1988.
  • Kim J, Grisso BL, Kim JK, et al. Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems. IEEE Sensors Applications Symposium; 2008 Feb 12–14; Atlanta, GA. p. 122–127.
  • Telba A, Ali WG. Modeling and simulation of piezoelectric energy harvesting. Proceedings of the World Congress on Engineering 2012 – WCE 2012; 2012 Jul 4–6; London, UK. Vol II.
  • Staworko M, Tadeusz U. Modeling and simulation of piezoelectric elements, comparison of available methods and tools. Mechanics. 2008;27:161–171.
  • Yatim HM, Ismail FM, Kosnan SE, et al. A development of piezoelectric model as an energy harvester from mechanical vibration. Chem Eng Trans. 2018;63:775–780.
  • Jaafar MF, Saleh H. Simulation of SDOF piezoelectric energy harvester using MATLAB. IJETT. 2016;39:338–342.
  • Najini H, Muthukumaraswamy SA. Piezoelectric energy generation from vehicle traffic with technoeconomic analysis. J Renew Energy. 2017;2017:9643858.
  • Xilinx Inc. System generator for DSP reference guide UG638 (v11.4). Vol. 638. 2009. Available from: www.xilinx.com
  • ECG dataset from “MIT-BIH database”. Available from: https://www.physionet.org/content/mitdb/1.0.0/
  • Xilinx System Generator v2.1 Basic Tutorial “Xilinx System Generator v2.1 for Simulink” Xilinx Development System.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.