2,535
Views
77
CrossRef citations to date
0
Altmetric
Research Article

Role of machine learning in gait analysis: a review

&
Pages 441-467 | Received 26 Jun 2020, Accepted 09 Sep 2020, Published online: 20 Oct 2020

References

  • Dolatabadi E, Taati B, Mihailidis A. An automated classification of pathological gait using unobtrusive sensing technology. IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2336–2346.
  • Lai DTH, Begg RK, Palaniswami M. Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans Inf Technol Biomed. 2009;13(5):687–701.
  • Paulo J, Peixoto P, Amorim P. Trajectory-based gait pattern shift detection for assistive robotics applications. Intel Serv Robot. 2019;12(3):255–264.
  • Kutilek P, Hozman J. Prediction of lower extremities movement using characteristics of angle-angle diagrams and artificial intelligence. Proceedings of the 3rd International Conference on E-Health and Bioengineering – EHB; 2011.
  • Farah JD, Baddour N, Lemaire ED. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control. J Neuroeng Rehabil. 2019;16(1):22.
  • Begg R, Kamruzzaman J. Neural networks for detection and classification of walking pattern changes due to ageing. Aust Phys Eng Sci Med. 2006;29(2):188–195.
  • Lau HY, Tong KY, Zhu H. Support vector machine for classification of walking conditions using miniature kinematic sensors. Med Biol Eng Comput. 2008;46(6):563–573.
  • Souza AM, Stemmer MR. Extraction and classification of human body parameters for gait analysis. J Control Autom Electr Syst. 2018;29(5):586–604.
  • Hyeon-Min S, Sangmin L. Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience. J Central South Univ. 2015;22(5):1801–1808.
  • Wei W, McElroy C, Dey S. Action understanding and movement error identification for the treatment of patients with Parkinson’s disease. IEEE International Conference on Healthcare Informatics; 2018.
  • Leightley D, McPhee JS, Yap MH. Automated analysis and quantification of human mobility using a depth sensor. IEEE J Biomed Health Inform. 2017;21(4):939–948.
  • Arosha Senanayake SMN, Malik OA, Iskandar PM, et al. A knowledge-based intelligent framework for anterior cruciate ligament rehabilitation monitoring. Appl Soft Comput. 2014;20:127–141.
  • Gestel LV, Laet TD, Lello ED, et al. Probabilistic gait classification in children with cerebral palsy: a Bayesian approach. Res Dev Disabil. 2011;32(6):2542–2552.
  • Mu T, Pataky TC, Findlow AH, et al. Automated nonlinear feature generation and classification of foot pressure lesions. IEEE Trans Inf Technol Biomed. 2010;14(2):418–424.
  • Pla A, Mordvanyuk N, Lopez M, et al. Bag-of-steps: predicting lower-limb fracture rehabilitation length. Neurocomputing. 2017;268:109–115.
  • Yoo TK, Kim SK, Choi SB, et al. Interpretation of movement during stair ascent for predicting severity and prognosis of knee osteoarthritis in elderly women using support vector machine. Proceedings of International Conference of the IEEE EMBS; 2013. p. 192–196.
  • Xiong B, Zeng N, Li H, et al. Intelligent prediction of human lower extremity joint moment: an artificial neural network approach. IEEE Access Spec Sect Data Enab Intell Dig Health. 2019;7:29973–29980.
  • Zeng W, Ismail SA, Pappas E. Classification of gait patterns in patients with unilateral anterior cruciate ligament deficiency based on phase space reconstruction. Soft Comput. 2020;24(3):1851–1868.
  • Alaqtash M, Sarkodie-Gyan T, Yu H, et al. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms. Proceedings of International Conference of the IEEE-EMBS; Boston, MA; 2011. p. 453–457.
  • Devanne M, Berretti S. Learning shape variations of motion trajectories for gait analysis. 23rd International Conference on Pattern Recognition (ICPR); 2016. p. 895–900.
  • Begg RK, Palaniswami M, Owen B. Support vector machines for automated gait classification. IEEE Trans Biomed Eng. 2005;52(5):828–838.
  • Costa A, Ianez E, Ubeda A, et al. Decoding the attentional demands of gait through EEG gamma band features. PLoS One. 2016;11(4):e0154136.
  • Goh SK, Abbass HA, Tan KC, et al. Spatio-spectral representation learning for electroencephalographic gait-pattern classification. IEEE Trans Neural Syst Rehabil Eng. 2018;26(9):1858–1867.
  • Paulo J, Peixoto P, Nunes UJ. ISR-AIWALKER: robotic walker for intuitive and safe mobility assistance and gait analysis. IEEE Trans Hum Mach Syst. 2017;47(6):1110–1122.
  • Liu DX, Du W, Wu X, et al. Deep rehabilitation gait learning for modelling knee joints of lower limb exoskeleton. Proceedings of IEEE International Conference on Robotics and Biomimetics; 2016. p. 1058–1063.
  • Thongsook A, Nunthawarasilp T, Kraypet P, et al. C4.5 decision tree against neural network on gait phase recognition for lower limp exoskeleton. First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP); 2019. p. 69–72.
  • Guo G, Guffey K, Chen W, et al. Classification of normal and pathological gait in young children based on foot pressure data. Neuroinformatics. 2017;15(1):13–24.
  • Williams G, Lai D, Schache A, et al. Classification of gait disorders following traumatic brain injury. J Head Trauma Rehabil. 2015;30(2):E13–E23.
  • Qiu S, Liu L, Wang Z, et al. Body sensor network-based gait quality assessment for clinical decision-support via multi-sensor fusion. IEEE Access Spec Sect Wireless Body Area Netw. 2019;7:59884–59894.
  • Huang R, Peng Z, Cheng H, et al. Learning-based walking assistance control strategy for a lower limb exoskeleton with hemiplegia patients. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018. p. 2280–2285.
  • Muniz AMS, Manfio EF, Andrade MC, et al. Principal component analysis of vertical ground reaction force: a powerful method to discriminate normal and abnormal gait and assess treatment. Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society; 2006. p. 2683–2686.
  • Semwal VB, Chakraborty P, Nandi GC. Less computationally intensive fuzzy logic (type-1)-based controller for humanoid push recovery. Rob Auton Syst. 2015;63:122–135.
  • Lai DTH, Levinger P, Begg RK, et al. Identification of patellofemoral pain syndrome using a support vector machine approach. Proceedings of the 29th Annual International Conference of the IEEE EMBS; 2007. p. 3144–3147.
  • Nair SS, French RM, Laroche D, et al. The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):174–184.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
  • Pham H, Kawanishi M, Narikiyo T. A LLE-HMM-based framework for recognizing human gait movement from EMG. IEEE International Conference on Robotics and Automation (ICRA); 2015. p. 2997–3002.
  • Lonini L, Gupta A, Kording K, et al. Activity recognition in patients with lower limb impairments: do we need training data from each patient? International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016.
  • Recher F, Banos O, Nikamp CDM, et al. Optimizing activity recognition in stroke survivors for wearable exoskeletons. 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob); 2018. p. 173–178.
  • Sok P, Xiao T, Azeze Y, et al. Activity recognition for incomplete spinal cord injury subjects using hidden Markov models. IEEE Sens J. 2018;18(15):6369–6374.
  • Lau H, Tong K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture. 2008;27(2):248–257.
  • Jung JY, Chae MG, Jang IH, et al. A hybrid control method of an exoskeleton robot for intention-driven walking rehabilitation of stroke patients. 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI); 2012. p. 58–60.
  • Jiang S, Pang Y, Wang D, et al. Gait recognition based on graphene porous network structure pressure sensors for rehabilitation therapy. Proceedings of IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC); 2018.
  • Nazmi N, Rahman MAA, Ariff MHM. Generalization of ANN model in classifying stance and swing phases of gait using EMG signals. IEEE-EMBS Conference on Biomedical Engineering and Sciences; 2018. p. 461–466.
  • Lee SI, Ozsecen MY, Toffola LD, et al. Activity detection in uncontrolled free living conditions using a single accelerometer. Proceedings of IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN); 2015.
  • Adil S, Anwar T, Jumaily AA. Extreme learning machine based sEMG for drop-foot after stroke detection. Proceedings of International Conference on Information Science and Technology; 2016. p. 18–22.
  • Cho J, Cho YS, Moon SB, et al. Scoliosis screening through a machine learning based gait analysis test. Int J Precis Eng Manuf. 2018;19(12):1861–1872.
  • Cui C, Bian GB, Hou ZG, et al. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans Neural Syst Rehabil Eng. 2018;26(4):856–864.
  • Zhang Y, Ma Y. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Comput Biol Med. 2019;106:33–39.
  • Sobral H, Ferreira JP, Vieira A, et al. Two new indices to assess gait disturbances applied to anterior cruciate ligament reconstructed knees. Proceedings of IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems; 2018. p. 701–706.
  • Hortal E, Ubeda A, Ianez E, et al. Using EEG signals to detect the intention of walking initiation and stop. Artif Comput Biol Med (IWINAC). 2015;278–287.
  • Park S, Park FC, Choi J, et al. EEG-based gait state and gait intention recognition using spatio-spectral convolutional neural network. IEEE International Winter Conference on Brain-Computer Interface (BCI); 2019.
  • Schutte LM, Narayanan U, Stout JL, et al. An index for quantifying deviations from normal gait. Gait Posture. 2000;11(1):25–31.
  • Ghasemzadeh H, Jafari R, Prabhakaran B. A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. IEEE Trans Inf Technol Biomed. 2010;14(2):198–206.
  • Levinger P, Lai DTH, Begg RK, et al. The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters. Gait Posture. 2009;29(1):91–96.
  • Alaqtash M, Yu H, Brower R, et al. Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Eng Appl Artif Intell. 2011;24(6):1018–1025.
  • Ferreira JP, Vieira A, Ferreira P, et al. Human knee joint walking pattern generation using computational intelligence techniques. Neural Comput Appl. 2018;30(6):1701–1713.
  • Dallali H, Knop L, Castelino L, et al. Estimating the multivariable human ankle impedance in dorsi-plantarflexion and inversion-eversion directions using EMG signals and artificial neural networks. Int J Intell Robot Appl. 2017;1(1):19–31.
  • Khor KX, Chin PJH, Hisyam AR, et al. Development of CR2-Haptic: a compact and portable rehabilitation robot for wrist and forearm training. EEE Conference on Biomedical Engineering and Sciences (IECBES); 2014.
  • Luu TP, Lim HB, Hoon KH, et al. Subject specific gait parameters prediction for robotic gait rehabilitation via generalized regression neural network. Proceedings of IEEE International Conference on Robotics and Biomimetics; 2011. p. 914–919.
  • Gholami M, Ejupi A, Rezaei A, et al. Estimation of knee joint angle using a fabric-based strain sensor and machine learning: a preliminary investigation. 7th IEEE International Conference on Biomedical Robotics and Bio mechatronics (Biorob); 2018. p. 589–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.