165
Views
4
CrossRef citations to date
0
Altmetric
Innovations

Validation of a non-invasive imaging photoplethysmography device to assess plantar skin perfusion, a comparison with laser speckle contrast analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 170-176 | Received 03 Jul 2020, Accepted 11 Jan 2021, Published online: 22 Mar 2021

References

  • Geyer MJ, Jan YK, Brienza DM, et al. Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow. J Rehabil Res Dev. 2004;41(6):797–805.
  • Humeau A, Koïtka A, Abraham P, et al. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: Scalogram analyses. Phys Med Biol. 2004;49(17):3957–3970.
  • Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng. 1999;46(10):1230–1239.
  • Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47–64.
  • Allen J, Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol Meas. 2014;35(7):R91–R141.
  • Behforootan S, Chatzistergos PE, Chockalingam N, et al. Localized pressure stimulation using turf-like structures can improve skin perfusion in the foot. Microcirculation. 2019;26(6):0–1.
  • Mennes OA, van Netten JJ, van Baal JG, et al. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol Meas. 2019;40(6):065002.
  • Aizu Y, Asakura T. Bio-speckle application blood flow. Opt Laser Technol. 1991;23:205–219.
  • Draijer M, Hondebrink E, Van Leeuwen T, et al. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci. 2009;24(4):639–651.
  • Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt. 2010;15(1):011109.
  • Briers JD, Mcnamara PM, O’Connell ML, et al. Laser Speckle Contrast Analysis (LASCA) for measuring blood flow. Microcirc Imaging. 2012:147–163.
  • Li H, Liu Q, Lu H, et al. Directly measuring absolute flow speed by frequency-domain laser speckle imaging. Opt Express. 2014;22(17):21079–21087.
  • Bezemer R, Klijn E, Khalilzada M, et al. Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion. Microvasc Res. 2010;79(2):139–143.
  • Binzoni T, Humeau-Heurtier A, Abraham P, et al. Blood perfusion values of laser speckle contrast imaging and laser doppler flowmetry: is a direct comparison possible? IEEE Trans Biomed Eng. 2013;60(5):1259–1265.
  • Tew GA, Klonizakis M, Crank H, et al. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res. 2011;82(3):326–332.
  • Millet C, Roustit M, Blaise S, et al. Comparison between laser speckle contrast imaging and laser Doppler imaging to assess skin blood flow in humans. Microvasc Res. 2011;82(2):147–151.
  • Mahé G, Humeau-Heurtier A, Durand S, et al. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imag. 2012;5(1):155–163.
  • Hosaka R, Noji R. Biomedical signal and image processing projects using matlab and labview tools. IFMBE Proc. 2017;17(65):1061–1064.
  • Kamshilin AA, Teplov V, Nippolainen E, et al. Variability of microcirculation detected by blood pulsation imaging. PLoS One. 2013;8(2):e57117.
  • Kamshilin AA, Miridonov S, Teplov V, et al. Photoplethysmographic imaging of high spatial resolution. Biomed Opt Express. 2011;2(4):996–1006.
  • Kamshilin AA, Nippolainen E, Sidorov IS, et al. A new look at the essence of the imaging photoplethysmography. Sci Rep. 2015;5(1):1–9.
  • Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77(1):13–19.
  • Lister T, Wright PA, Chappell PH. Optical properties of human skin. J Biomed Opt. 2012;17(9):90901–90901.
  • Daly SM, Leahy MJ. Go with the flow’: a review of methods and advancements in blood flow imaging. J Biophotonics. 2013;6(3):217–255.
  • Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors—past and present. Electron. 2014;3(2):282–302.
  • Nitzan M, Adar Y, Hoffman E, et al. Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds. Sensors. 2013;13(11):14797–14812.
  • Bashkatov AN, Genina EA, Kochubey VI, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D: Appl Phys. 2005;38(15):2543–2555.
  • Khalil OS, Yeh S, Lowery MG, et al. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin. J Biomed Opt. 2003;8(2):191–205.
  • Singh VP, Bali A, Singh N, et al. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14.
  • Avery NCC, Bailey AJJ. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol. 2006;54(7):387–395.
  • Cui W, Ostrander LE, Lee BY. In vivo reflectance of blood and tissue as a function of light wavelength. IEEE Trans Biomed Eng. 1990;37(6):632–639.
  • Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191.
  • Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–1160.
  • Jonasson H, Bergstrand S, Nystrom FH, et al. Skin microvascular endothelial dysfunction is associated with type 2 diabetes independently of microalbuminuria and arterial stiffness. Diab Vasc Dis Res. 2017;14(4):363–371.
  • Hultman M, Fredriksson I, Larsson M, et al. A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup. J Biophotonics. 2018;11:1–9.
  • Draijer MJ, Hondebrink E, van Leeuwen TG, et al. Connecting laser Doppler perfusion imaging and laser speckle contrast analysis. Opt Diagnostics Sens VIII. 2008. 6863:68630C.
  • Khalil A, Humeau-Heurtier A, Abraham P, et al. Microvascular blood flow with laser speckle contrast imaging: analysis of static scatterers effect through modelling and simulation. Proceedings – UKSim-AMSS 8th European Modelling Symposium on Computer Model Simulation, EMS 2014. 2014, 82–86.
  • Chao CYL, Zheng YP, Cheing GLY. Epidermal thickness and biomechanical properties of plantar tissues in diabetic foot. Ultrasound Med Biol. 2011;37(7):1029–1038.
  • Lindahl F, Tesselaar E, Sjöberg F. Assessing paediatric scald injuries using laser speckle contrast imaging. Burns. 2013;39(4):662–666.
  • Yudovsky D, Nouvong A, Schomacker K, et al. Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging. J Biophotonics. 2011;4(7–8):565–576.
  • Yudovsky D, Nouvong A, Pilon L. Hyperspectral imaging in diabetic foot wound care. J Diabetes Sci Technol. 2010;4(5):1099–1113.
  • Jayanthy AK, Sujatha N, Reddy MR, et al. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique. Biomed Appl Light Scatt VIII. 2014. 8952:89521D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.