652
Views
23
CrossRef citations to date
0
Altmetric
Reviews

The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 511-531 | Received 16 Aug 2020, Accepted 14 Feb 2021, Published online: 12 Jul 2021

References

  • Hassan MI, Sultana N, Hamdan S. Bioactivity assessment of poly (ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater. 2014;2014:573238.
  • Phipps MC, Clem WC, Grunda JM, et al. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials. 2012;33:524–534.
  • Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–127.
  • Qu H, Fu H, Han Z, et al. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9:26252–26262.
  • Shafaei H, Kalarestaghi H. Adipose‐derived stem cells: an appropriate selection for osteogenic differentiation. J Cell Physiol. 2020;235:8371–8386.
  • Shafaei H, Bagernezhad H, Soliemanlou H, et al. Transplantation of autologous adipose derived mesenchymal stem cells for improvement of quality of life in osteoarthritis patients. Int J Musculoskelet Pain Prev. 2016;1:109–116.
  • Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, et al. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci. 2019;30:857–868.
  • Silva AD, Stocco THD, Granato AE, et al. Recent advances in nanostructured polymer composites for biomedical applications. In: Swain SK, Jawaid M, editors. Nanostructured polymer composites for biomedical applications. Elsevier; 2019. p. 21–52.
  • Hassan MI, Sultana N. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech. 2017;7:249.
  • Karkan SF, Davaran S, Rahbarghazi R, et al. Electrospun nanofibers for the fabrication of engineered vascular grafts. J Biol Eng. 2019;13:83.
  • Gholipourmalekabadi M, Mozafari M, Bandehpour M, et al. Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies. Biotechnol Appl Biochem. 2015;62:785–794.
  • Zargarian S, Hadadiasl V. A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. 2010.
  • Shin SH, Purevdorj O, Castano O, et al. A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012;3:2041731412443530.
  • Asmatulu R, Patrick S, Ceylan M, et al. Antibacterial polycaprolactone/natural hydroxyapatite nanocomposite fibers for bone scaffoldings. j Bionanosci. 2015;9:120–126.
  • Fathi Karkan S, Davaran S, Akbarzadeh A. Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomed Res J. 2019;4:209–219.
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9629.
  • Xue R, Qian Y, Li L, et al. Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 2017;8:148.
  • Gao X, Song J, Ji P, et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:3499–3515.
  • Nikpou P, Soleimani Rad J, Mohammad Nejad D, et al. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds. Artif Cells Nanomed Biotechnol. 2017;45:283–290.
  • Sultana N, Khan TH. Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly (hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films. J Nanomater. 2013;2013:1–8.
  • Su Z, Li J, Ouyang Z, et al. Biomimetic 3D hydroxyapatite architectures with interconnected pores based on electrospun biaxially orientated PCL nanofibers. RSC Adv. 2014;4:14833–14839.
  • Fang R, Zhang E, Xu L, et al. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol. 2010;10:7747–7751.
  • Li L, Li G, Jiang J, et al. Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. J Mater Sci Mater Med. 2012;23:547–554.
  • Pokhrel S. Hydroxyapatite: preparation, properties and its biomedical applications. ACES. 2018;08:225–240.
  • Karkan SF, Rahbarghazi R, Davaran S, et al. Electrospun polyurethane/poly (ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions. Microvasc Res. 2021;133:104073.
  • Khojasteh A, Motamedian SR, Rad MR, et al. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells. 2015;7:1215–1221.
  • Han F, Zhang P, Sun Y, et al. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction. Int J Nanomedicine. 2015;10:7333–7343.
  • Kouhi M, Shamanian M, Fathi M, et al. Synthesis, characterization, in vitro bioactivity and biocompatibility evaluation of hydroxyapatite/bredigite (Ca 7 MgSi 4 O 16) composite nanoparticles. JOM. 2016;68:1061–1070.
  • Zhang H, Darvell BW. Morphology and structural characteristics of hydroxyapatite whiskers: effect of the initial Ca concentration, Ca/P ratio and pH. Acta Biomater. 2011;7:2960–2968.
  • Prosecká E, Buzgo M, Rampichová M, et al. Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. BioMed Res Int. 2012;2012:1–10.
  • Keivani F, Shokrollahi P, Zandi M, et al. Engineered electrospun poly (caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Mater Sci Eng C. 2016;68:78–88.
  • Liverani L, Roether J, Boccaccini A. Nanofiber composites in bone tissue engineering. In: Ramalingam M, Ramakrishna S, editors. Nanofiber composites for biomedical applications. Elsevier; 2017. p. 301–323.
  • Ruckh TT, Carroll DA, Weaver JR, et al. Mineralization content alters osteogenic responses of bone marrow stromal cells on hydroxyapatite/polycaprolactone composite nanofiber scaffolds. J Funct Biomater. 2012;3:776–798.
  • Venugopal JR, Low S, Choon AT, et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32:388–397.
  • Chong LH, Hassan MI, Sultana N. Electrospun Polycaprolactone (PCL) and PCL/nano-hydroxyapatite (PCL/nHA)-based nanofibers for bone tissue engineering application. in 2015 10th Asian Control Conference (ASCC); 2015. IEEE.
  • Li H, Huang C, Jin X, et al. An electrospun poly (ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Adv. 2018;8:25228–25235.
  • Chakraborty PK, Adhikari J, Saha P. Facile fabrication of electrospun regenerated cellulose nanofiber scaffold for potential bone-tissue engineering application. Int J Biol Macromol. 2019;122:644–652.
  • Saghati S, Akbarzadeh A, Del Bakhshayesh AR, et al. Electrospinning and 3D printing: prospects for market opportunity. In: Kny E, Ghosal K, Thomas S, editors. Electrospinning; 2018. p. 136–155.
  • Yi-Fan G, Imran S, Rafaqat H. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci. 2013;48(8):3027–3054.
  • Pu J, Yuan F, Li S, et al. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomater. 2015;13:131–141.
  • Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1:56–64.
  • Baji A, Mai YW, Wong SC, et al. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol. 2010;70:703–718.
  • Anindyajati A, Boughton P, Ruys A. The effect of rotating collector design on tensile properties and morphology of electrospun polycaprolactone fibres. MATEC Web Conf. 2015;27:02002.
  • He X, Xiao Q, Lu C, et al. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules. 2014;15:618–627.
  • De Prá MAA, Ribeiro-do-Valle RM, Maraschin M, et al. Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Mater Lett. 2017;193:154–157.
  • Liao G, Jiang S, Xu X, et al. Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors. Mater Lett. 2012;82:159–162.
  • Gao X, Zhang X, Song J, et al. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomedicine. 2015;10:7109–7128.
  • Abdullah MF, Nuge T, Andriyana A, et al. Core–shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers. 2019;11:2008.
  • Niu Q, Zeng L, Mu X, et al. Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem. 2016;34:337–343.
  • Ji X, Yang W, Wang T, et al. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering . J Biomed Nanotechnol. 2013;9:1672–1678.
  • Surucu S, Sasmazel HT. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. Int J Biol Macromol. 2016;92:321–328.
  • Pant HR, Risal P, Park CH, et al. Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering. Chem Eng J. 2013;221:90–98.
  • Enayati MS, Behzad T, Sajkiewicz PŁ, et al. Theoretical and experimental study of the stiffness of electrospun composites of poly (vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite. Cellulose. 2018;25:65–75.
  • Aytac Z, Uyar T. Applications of core-shell nanofibers: drug and biomolecules release and gene therapy. In: Letizia Focarete M, Tampieri A, editors. Core-shell nanostructures for drug delivery and theranostics. Elsevier; 2018. p. 375–404.
  • Mickova A, Buzgo M, Benada O, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13:952–962.
  • Su Y, Su Q, Liu W, et al. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater. 2012;8:763–771.
  • Shao W, He J, Sang F, et al. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;58:342–351.
  • Shalumon KT, Lai GJ, Chen CH, et al. Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite Core-Shell Nanofibrous Membranes. ACS Appl Mater Interfaces. 2015;7:21170–21181.
  • Gong T, Liu T, Zhang L, et al. Design redox-sensitive drug-loaded nanofibers for bone reconstruction. ACS Biomater Sci Eng. 2018;4:240–247.
  • Hutmacher DW, Dalton PD. Melt electrospinning. Chem Asian J. 2011;6:44–56.
  • Zhang B, Yan X, He HW, et al. Solvent-free electrospinning: opportunities and challenges. Polym Chem. 2017;8:333–352.
  • Lee H, Ahn S, Choi H, et al. Fabrication, characterization, and in vitro biological activities of melt-electrospun PLA micro/nanofibers for bone tissue regeneration. J Mater Chem B. 2013;1:3670–3677.
  • Abdal-Hay A, Abbasi N, Gwiazda M, et al. Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing. Eur Polym J. 2018;105:257–264.
  • Ibrahim Y, Hussein E, Zagho M, et al. Melt electrospinning designs for nanofiber fabrication for different applications. IJMS. 2019;20:2455.
  • Eichholz KF, Hoey DA. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018;75:140–151.
  • Dayan CB, Afghah F, Okan BS, et al. Modeling 3D melt electrospinning writing by response surface methodology. Mater Des. 2018;148:87–95.
  • Park KE, Kim BS, Kim MH, et al. Basic fibroblast growth factor-encapsulated PCL nano/microfibrous composite scaffolds for bone regeneration. Polymer. 2015;76:8–16.
  • Kim BS, Park KE, Kim MH, et al. Effect of nanofiber content on bone regeneration of silk fibroin/poly (ε-caprolactone) nano/microfibrous composite scaffolds. Int J Nanomed. 2015;10:485.
  • Farrugia BL, Brown TD, Upton Z, et al. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5:025001.
  • Wunner FM, Bas O, Saidy NT, et al. Melt electrospinning writing of three-dimensional poly (ε-caprolactone) scaffolds with controllable morphologies for tissue engineering applications. J Vis Exp. 2017:e56289.
  • Fuchs A, Youssef A, Seher A, et al. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration - a pilot study in vitro. BMC Oral Health. 2019;19:28.
  • Zhang LH, Duan XP, Yan X, et al. Recent advances in melt electrospinning. RSC Adv. 2016;6:53400–53414.
  • Shotorbani BB, Alizadeh E, Salehi R, et al. Adhesion of mesenchymal stem cells to biomimetic polymers: a review. Mater Sci Eng C. 2017;71:1192–1200.
  • Udomluck N, Lee H, Hong S, et al. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci. 2020;520:146311.
  • Chahal S, Jahir Hussain FS, Kumar A, et al. Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Adv. 2015;5:29497–29504.
  • Shakir M, Jolly R, Khan MS, et al. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies . Int J Biol Macromol. 2015;80:282–292.
  • Deliormanlı AM, Konyalı R. Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. J Aust Ceram Soc. 2019;55:247–256.
  • Nirmala R, Nam KT, Park DK, et al. Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly (ε-caprolactone) nanofibers via electrospinning. Surf Coat Technol. 2010;205:174–181.
  • Elangomannan S, Louis K, Dharmaraj BM, et al. Carbon nanofiber/polycaprolactone/mineralized hydroxyapatite nanofibrous scaffolds for potential orthopedic applications. ACS Appl Mater Interfaces. 2017;9:6342–6355.
  • Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. 2016;133.
  • Xu T, Miszuk JM, Zhao Y, et al. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater. 2015;4:2238–2246.
  • Rezk AI, Mousa HM, Lee J, et al. Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. J Coat Technol Res. 2019;16:477–489.
  • Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials. 2010;31:5498–5509.
  • Murugan N, Murugan C, Sundramoorthy AK. In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. Arabian J Chem. 2018;11:959–969.
  • Victor SP, Vm V, Komeri R, et al. Covalently cross-linked hydroxyapatite–citric acid–based biomimetic polymeric composites for bone applications. J Bioact Compat Polym. 2015;30:524–540.
  • Chen J, Zhang T, Hua W, et al. 3D Porous poly (lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloids Surf A. 2020;585:124048.
  • Frohbergh ME, Katsman A, Botta GP, et al. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33:9167–9178.
  • Wang G, Zheng L, Zhao H, et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng Part A. 2011;17:1341–1349.
  • Lu HT, Lu TW, Chen CH, et al. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2019;128:973–984.
  • Wu X, Miao L, Yao Y, et al. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells. Int J Nanomedicine. 2014;9:4135–4143.
  • Amani H, Arzaghi H, Bayandori M, et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. 2019;6:1900572.
  • Grande S, Van Guyse J, Nikiforov AY, et al. Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. J Appl Polym Sci. 2020;137:48914.
  • Manakhov A, Kedroňová E, Medalová J, et al. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater Des. 2017;132:257–265.
  • Bilek MMM, Vandrovcová M, Shelemin A, et al. Plasma treatment in air at atmospheric pressure that enables reagent-free covalent immobilization of biomolecules on polytetrafluoroethylene (PTFE). Appl Surf Sci. 2020;518:146128.
  • Aragon J, Navascues N, Mendoza G, et al. Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering. Int J Pharm. 2017;525:112–122.
  • Datta P, Dhara S. Engineering porosity in electrospun nanofiber sheets by laser engraving: a strategy to fabricate 3D scaffolds for bone graft applications. J Indian Inst Sci. 2019;99:329.
  • Park C, Xue R, Lannutti JJ, et al. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser. Mater Sci Eng C Mater Biol Appl. 2016;65:232.
  • Ameer JM, Anil Kumar P, Kasoju N. Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering. J Funct Biomater. 2019;10:30.
  • Yano T, Yah WO, Yamaguchi H, et al. Precise control of surface physicochemical properties for electrospun fiber mats by surface-initiated radical polymerization. Polym J. 2011;43:838–848.
  • Sofi HS, Ashraf R, Khan AH, et al. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng C Mater Biol Appl. 2019;94:1102–1124.
  • Zoppe JO, Ataman NC, Mocny P, et al. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev. 2017;117:1105–1318.
  • Park YJ, Kim KH, Lee JY, et al. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem. 2006;43:17–24.
  • Lee H, Lim S, Birajdar MS, et al. Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering. Int J Biol Macromol. 2016;93:1559–1566.
  • Guler Z, Sarac A. Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly (ε-caprolactone)/poly (m-anthranilic acid) nanofibers. Express Polym Lett. 2016;10:96–110.
  • Guler Z, Silva JC, Sezai Sarac A. RGD functionalized poly (ε-caprolactone)/poly (m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. Int J Polym Mater. 2017;66:139–148.
  • Cheng Y, Ramos D, Lee P, et al. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed Nanotechnol. 2014;10:287–298.
  • Zhang K, Wang Y, Sun T, et al. Bioinspired surface functionalization for improving osteogenesis of electrospun polycaprolactone nanofibers. Langmuir. 2018;34:15544–15550.
  • Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7:2796–2805.
  • Nam J, Huang Y, Agarwal S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–2257.
  • Wright L, Andric T, Freeman J. Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C. 2011;31:30–36.
  • Leong MF, Rasheed MZ, Lim TC, et al. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A. 2009;91:231–240.
  • Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–1590.
  • Lee JB, Jeong SI, Bae MS, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A. 2011;17:2695–2702.
  • Milleret V, Simona B, Neuenschwander P, et al. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications. Eur Cell Mater. 2011;21:286–303.
  • Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348–2358.
  • Whited BM, Whitney JR, Hofmann MC, et al. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32:2294–2304.
  • Vordemvenne T, Wähnert D, Koettnitz J, et al. Bone regeneration: a novel osteoinductive function of spongostan by the interplay between its nano-and microtopography. Cells. 2020;9:654.
  • Song J, Zhu G, Wang L, et al. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Biofabrication. 2017;9:015018.
  • Ranjith R, Balraj S, Ganesh J, et al. Effect of flow rate on fiber morphology and naringin release of electrospun naringin loaded polycaprolactone nanofibers. Int J Sci Res Sci Technol. 2017;3:05–08.
  • Wen P, Zong MH, Linhardt RJ, et al. Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol. 2017;70:56–68.
  • Sedghi R, Sayyari N, Shaabani A, et al. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer. 2018;142:244–255.
  • Mwiiri FK, Daniels R. Electrospun nanofibers for biomedical applications. In: Shegokar R, editor. Delivery of drugs. Elsevier; 2020. p. 53–74.
  • Asadi N, Alizadeh E, Rahmani Del Bakhshayesh A, et al. Fabrication and in vitro evaluation of nanocomposite hydrogel scaffolds based on gelatin/PCL–PEG–PCL for cartilage tissue engineering. ACS Omega. 2019;4:449–457.
  • Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, et al. Fabrication of three-dimensional scaffolds based on Nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega. 2018;3:8605–8611.
  • Rahmani Del Bakhshayesh A, Akbarzadeh A, Alihemmati A, et al. Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Deliv. 2020;27:269–282.
  • Staffa A, Vocetkova K, Sovkova V, et al. Polycaprolactone nanofiber mesh with adhered liposomes as a simple delivery system for bioactive growth factors. Transl Med Rep. 2018;2.
  • Zupančič Š, Baumgartner S, Lavrič Z, et al. Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. J Drug Delivery Sci Technol. 2015;30:408–416.
  • Morouço P, Biscaia S, Viana T, et al. Fabrication of poly (-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. Biomed Res Int. 2016;2016:1596157.
  • Miszuk JM, Xu T, Yao Q, et al. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl Mater Today. 2018;10:194–202.
  • Kiran ASK, Kizhakeyil A, Ramalingam R, et al. Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceram Int. 2019;45:18710–18720.
  • Voniatis C, Balsevicius L, Barczikai D, et al. Co-electrospun polysuccinimide/poly (vinyl alcohol) composite meshes for tissue engineering. J Mol Liq. 2020;306:112895.
  • Márquez Lobato Y, Graupera J, del Valle LJ, et al. Poly (e-caprolactone) films reinforced with chlorhexidine loaded electrospun polylactide microfibers. Express Polym Lett. 2017;11:674–689.
  • Rashedi S, Afshar S, Rostami A, et al. Co-electrospun poly (lactic acid)/gelatin nanofibrous scaffold prepared by a new solvent system: morphological, mechanical and in vitro degradability properties. Int J Polym Mater. 2020:1–9.
  • Freyman T, Pham Q, Mulligan RF, et al. Fibers comprising poorly soluble drugs and/or proteins. 2017. Google Patents:1–9.
  • Xu X, Chen X, Ma P, et al. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm. 2008;70:165–170.
  • Xu X, Chen X, Wang Z, et al. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur J Pharm Biopharm. 2009;72:18–25.
  • Gatti JW, Smithgall MC, Paranjape SM, et al. Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices. 2013;15:887–893.
  • Tang C, Ozcam AE, Stout B, et al. Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules. 2012;13:1269–1278.
  • Meng ZX, Zheng W, Li L, et al. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys. 2011;125:606–611.
  • Yu DG, Wang X, Li XY, et al. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater. 2013;9:5665–5672.
  • Yang Y, Li X, Qi M, et al. Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur J Pharm Biopharm. 2008;69:106–116.
  • Monteiro N, Martins A, Pires R, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci. 2014;2:1195–1209.
  • Kim TG, Park TG. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog. 2006;22:1108–1113.
  • Moerz ST, Huber P. Protein adsorption into mesopores: a combination of electrostatic interaction, counterion release, and van der Waals forces. Langmuir. 2014;30:2729–2737.
  • Gao H, Zhong Z, Xia H, et al. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater Sci. 2019;7:2571–2581.
  • Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, et al. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles. Int J Nanomedicine. 2019;14:5271–5285.
  • Kim J, Kang T, Kim H, et al. Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. J Ind Eng Chem. 2019;77:273–279.
  • Cho YI, Choi JS, Jeong SY, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6:4725–4733.
  • Kim GH, Min T, Park SA, et al. Coaxially electrospun micro/nanofibrous poly(epsilon-caprolactone)/eggshell-protein scaffold . Bioinspir Biomim. 2008;3:016006.
  • Lee H, Xu G, Kharaghani D, et al. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int J Pharm. 2017;531:101–107.
  • Yu H, Yang P, Jia Y, et al. Regulation of biphasic drug release behavior by graphene oxide in polyvinyl pyrrolidone/poly(ε-caprolactone) core/sheath nanofiber mats. Colloids Surf B Biointerfaces. 2016;146:63–69.
  • Song W, Yu X, Markel DC, et al. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication. 2013;5:035006.
  • Choi JS, Yoo HS. Nano-inspired fibrous matrix with bi-phasic release of proteins. J Nanosci Nanotechnol. 2010;10:3038–3045.
  • Wen S. Design of multi-drug release coaxial electrospun mat targeting infection and inflammation. University of Akron; 2018.
  • Bhattarai R, Bachu R, Boddu S, et al. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics. 2018;11:5.
  • Lee HJ, Park YH, Koh WG. Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation. Adv Funct Mater. 2013;23:591–597.
  • Ionescu LC, Lee GC, Sennett BJ, et al. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials. 2010;31:4113–4120.
  • Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004;10:33–41.
  • Wang T, Zhai Y, Nuzzo M, et al. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials. 2018;182:279–288.
  • Prosecká E, Rampichová M, Litvinec A, et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J Biomed Mater Res A. 2015;103:671–682.
  • Rezaei A, Mohammadi M. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Mater Sci Eng C Mater Biol Appl. 2013;33:390–396.
  • Raucci MG, Guarino V, Ambrosio L. Hybrid composite scaffolds prepared by sol–gel method for bone regeneration. Compos Sci Technol. 2010;70:1861–1868.
  • Dorj B, Won JE, Kim JH, et al. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction . J Biomed Mater Res A. 2013;101:1670–1681.
  • Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng. 2011;34:505–513.
  • Salerno A, Zeppetelli S, Di Maio E, et al. Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating . Biotechnol Bioeng. 2011;108:963–976.
  • Thadavirul N, Pavasant P, Supaphol P. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. J Biomater Sci Polym Ed. 2014;25:1986–2008.
  • Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26:5360.
  • Totaro A, Salerno A, Imparato G, et al. PCL-HA microscaffolds for in vitro modular bone tissue engineering. J Tissue Eng Regen Med. 2017;11:1865–1875.
  • Endres M, Hutmacher DW, Salgado AJ, et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 2003;9:689–702.
  • Hernandez I, Kumar A, Joddar B, et al. hydrogel and 3D printed polycaprolactone system for bone tissue engineering. Gels. 2017;3:26.
  • Kuss MA, Wu S, Wang Y, et al. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater. 2018;106:1788–1798.
  • Puppi D, Migone C, Grassi L, et al. Integrated three‐dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polym Int. 2016;65:631–640.
  • Hassan MI, Sun T, Sultana N. Fabrication of nanohydroxyapatite/poly (caprolactone) composite microfibers using electrospinning technique for tissue engineering applications. J Nanomater. 2014;2014:209049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.