223
Views
8
CrossRef citations to date
0
Altmetric
Innovations

A 3D image segmentation for lung cancer using V.Net architecture based deep convolutional networks

, ORCID Icon & ORCID Icon
Pages 337-343 | Received 04 Oct 2020, Accepted 15 Mar 2021, Published online: 12 Apr 2021

References

  • Travis WD, Brambilla E, Burke AP, et al. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: IARC; 2015.
  • Hom L, Lovly CM, Johnson DH. Chapter 107. Neoplasms of the lung. In: Kasper DL, Hauser, SL, Jameson JL, et al. Harrison’s principles of internal medicine. 19th ed. New York: McGraw-Hill; 2015.
  • Lin H-H, Murray M, Cohen T, et al. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. Lancet. 2008;372(9648):1473–1483.
  • National Lung Screening Trial Research Team; Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.
  • Sluimer I, Schilham A, Prokop M, et al. Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging. 2006;25(4):385–405.
  • Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.
  • Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging. 2001;20(6):490–498.
  • Wang S, Dong L, Wang X, et al. Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Med (Wars). 2020;15:190–197.
  • Guo Y, Liu Y, Georgiou T, et al. A review of semantic segmentation using deep neural networks. Int J Multimed Info Retr. 2018;7(2):87–93.
  • Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 3431–3440.
  • Kolařik M, Burget R, Uher V, et al. Optimized high resolution 3D Dense-U-Net network for brain and spine segmentation. Appl Sci. 2019;9(3):404.
  • Hesamian MH, Jia W, He X, et al. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 2019;32(4):582–596.
  • Prior F, Smith K, Sharma A, et al. The public cancer radiology imaging collections of The Cancer Imaging Archive. Sci Data. 2017;4:170124.
  • Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation. Fourth International Conference on 3D Vision (3DV); 2016. p. 565–571.
  • Nakagomi K, Shimizu A, Kobatake H, et al. Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume. Med Image Anal. 2013;17(1):62–77.
  • Korfiatis P, Skiadopoulos S, Sakellaropoulos P, et al. Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT. Br J Radiol. 2007;80(960):996–1004.
  • Uzelaltinbulat S, Ugur B. Lung tumor segmentation algorithm. Proc Comput Sci. 2017;120:140–147.
  • Wenqing S, Bin Z, Wei Q. Computer aided lung cancer diagnosis with deep learning algorithms. Medical Imaging 2016: Computer-Aided Diagnosis. Vol. 9785. International Society for Optics and Photonics; 2016. p. 97850Z.
  • Anthimopoulos M, Christodoulidis S, Ebner L, et al. Semantic segmentation of pathological lung tissue with dilated fully convolutional networks. IEEE J Biomed Health Inform. 2019;23(2):714–722.
  • Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015. p. 234–241.
  • Gordienko Y, Gang P, Hui J, et al. Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. International Conference on Theory and Applications of Fuzzy Systems and Soft Computing. Springer; 2018. p. 638–647.
  • Hossain S, Najeeb S, Shahriyar A, et al. A pipeline for lung tumor detection and segmentation from CT scans using dilated convolutional neural networks. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2019. p. 1348–1352.
  • Cicek Ö, Abdulkadir A, Lienkamp SS, et al. 3F U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2016. p. 424–432.
  • Zhou X, Ito T, Takayama R, et al. Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. Deep Learning and Data Labeling for Medical Applications. DLMIA 2016, LABELS 2016. Lecture Notes in Computer Science. Vol. 10008. Cham, Switzerland: Springer; 2016.
  • Pang S, Du A, He X, et al. Fast and accurate lung tumor spotting and segmentation for boundary delineation on CT slices in a coarse-to-fine framework. International Conference on Neural Information Processing. Springer; 2019. p. 589–597.
  • Pang S, Du A, Orgun MA, et al. Ctumorgan: a unified framework for automatic computed tomography tumor segmentation. Eur J Nucl Med Mol Imaging. 2020;47(10):2248–2268.
  • Uday K, Rafi AM, Rakibul H, et al. Lung cancer tumor region segmentation using recurrent 3D-DenseUNet, arXiv e-prints; 2018.
  • Napel S, Plevritis SK. NSCLC radiogenomics: initial Stanford study of 26 cases. Cancer Imaging Arch; 2014.
  • Bakr S, Gevaert O, Echegaray S, et al. A radiogenomic dataset of non-small cell lung cancer. Sci Data. 2018;5:180202.
  • Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–216.
  • Simpson AL, Michela A, Spyridon B, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv [cs.CV]. arXiv; 2019. Available from: http://arxiv.org/abs/1902.09063
  • Data Format Working Group. Neuroimaging informatics technology initiative; 2021. Available from: https://nifti.nimh.nih.gov/
  • Esteban O, Markiewicz CJ, Blair RW, et al. fmriprep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16(1):111–116.
  • Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):60.
  • Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks applied to visual document analysis. Proceedings of the 2003 Seventh International Conference on Document Analysis and Recognition (ICDAR 2003). Vol. 2; 2003. p. 958–963.
  • Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. 3rd ed. Toronto, Ontario: Thomson; 2008.
  • Hu Q, de F Souza LF, Holanda GB, et al. An effective approach for CT lung segmentation using mask region-based convolutional neural networks. Artif Intell Med. 2020;103:101792.
  • Feng X, Qing K, Tustison NJ, et al. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys. 2019;46(5):2169–2180.
  • Singh SP, Wang L, Gupta S, et al. 3D deep learning on medical images: a review. Sensors. 2020;20(18):5097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.