363
Views
19
CrossRef citations to date
0
Altmetric
Innovations

IoT-enabled cloud-based real-time remote ECG monitoring system

, , ORCID Icon &
Pages 473-485 | Received 06 Feb 2021, Accepted 22 Feb 2021, Published online: 21 May 2021

References

  • World Health Organization. Global status report on noncommunicable diseases 2010. Geneva (Switzerland): World Health Organization; 2010. p. 176.
  • Heart disease deaths in India: what statistics show. [Online]. Available from: https://www.livemint.com/Politics/fKmvnJ320JOkR7hX0lbdKN/Rural-India-surpasses-urban-in-heart-diseaserelated-deaths.html
  • International Institute for Population Sciences. National family health survey (NFHS-4) 2015–16 India. International Institute for Population Sciences (IIPS) and ICF. 2017. p. 1–192. Available from: http://rchiips.org/NFHS/NFHS-4Reports/India.pdf
  • Sahu M, Atulkar M, Ahirwal MK. Comprehensive investigation on IoT based smart HealthCare system. IEEE Int Conf ICPC2T. 2020;8(5):33–37.
  • Gupta R, Bera JN, Mitra M. An intelligent telecardiology system for offline wireless transmission and remote analysis of ECG. J Med Eng Technol. 2012;36(7):358–365.
  • Xia H, Asif I, Zhao X. Cloud-ECG for real time ECG monitoring and analysis. Comput Methods Programs Biomed. 2013;110(3):253–259.
  • Sahu M, Atulkar M, Ahirwal MK. IoT based smart healthcare system: a review on constituent. J Circuits Syst Comput 2021. 2021;30(11):1–51.
  • Baker S, Xiang W, Atkinson I. Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access. 2017;5:26521.
  • Satija U, Ramkumar B, Manikandan SM. Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet Things J. 2017;4(3):815–823.
  • Yang Z, Zhou Q, Lei L, et al. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J Med Syst. 2016;40(12):286.
  • Fraiwan L, Al-Bataineh O, Matouq J, et al. ECG-based wireless home infant apnoea monitor. J Med Eng Technol. 2009;33(4):309–313.
  • Andreão RV, Dorizzi B, Boudy J. ECG signal analysis through hidden Markov models. 2006;53(8):1541–1549.
  • Kim H, Kim S, Van Helleputte N, et al. A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans Biomed Circuits Syst. 2014;8(2):257–267.
  • Miao F, Cheng Y, He Y, et al. A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors (Basel). 2015;15(5):11465–11484.
  • Park C, Chou PH, Bai Y, et al. An ultra-wearable, wireless, low power ECG monitoring system. IEEE Biomedical Circuits and Systems Conference healthcare technology (BioCAS 2006). Piscataway  (NJ): IEEE; 2006. p. 241–244.
  • Pan J, Willis J. A real-time QRS detection algorithm. Piscataway  (NJ): IEEE; 1985. p. 230–236.
  • Winokur ES, Delano MK, Sodini CG. A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans Biomed Eng. 2013;60(1):189–192.
  • Aktas F, Ceken C, Erdemli YE. IoT-based healthcare framework for biomedical applications. J Med Biol Eng. 2018;38(6):966–979.
  • Moody G, Mark RG. MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.
  • Liu C, Zhang X, Zhao L, et al. Signal quality assessment and lightweight qrs detection for wearable ECG smartvest system. IEEE Internet Things J. 2019;6(2):1363–1374.
  • Mestrado TDE, Projecto EM. Internet of things cloud: architecture and implementation. Time. 2008;5(5):13783.
  • Djelouat H, Al Disi M, Boukhenoufa I, et al. Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020;72:102839.
  • Chen C, Chuang C. A QRS detection and R point recognition method for wearable single-lead ECG devices. Sensors (Basel). 2017;17:1969.
  • Rachim VP, Chung WY. Wearable noncontact armband for mobile ECG monitoring system. IEEE Trans Biomed Circuits Syst. 2016;10(6):1112–1118.
  • Mahmoud SA, Bamakhramah A, Al-Tunaiji SA. Low-noise low-pass filter for ECG portable detection systems with digitally programmable range low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits Syst Signal Process. 2013;32(5):2029–2045.
  • Larson A. Clinical alarms management in the intermediate cardiology and cardiovascular intensive care units at the University of Iowa hospital and clinics; 2018. p. 1–35.
  • Li J, Zhou H, Zuo D, et al. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study. Biomed Mater Eng. 2014;24(1):1027–1033.
  • Dilmaghani RS, Bobarshad H, Ghavami M, et al. Wireless sensor networks for monitoring physiological signals of multiple patients. IEEE Trans Biomed Circuits Syst. 2011;5(4):347–356.
  • Mandala S, Di TC. ECG parameters for malignant ventricular arrhythmias: a comprehensive review. J Med Biol Eng. 2017;37(4):441–453.
  • Klabunde RE. Cardiovascular physiology concepts. 2nd ed. Vol. 53. Lippincott Williams and Wilkins; 2013.
  • ST Microelectronics. STM32F103xC,STM32F103xD,STM32F103xE. 2018. p. 1–143. [Online]. Available from: https://www.st.com/resource/en/datasheet/stm32f103ve.pdf
  • Sanghai berry. Available from: http://www.shberrymed.com/pm6750
  • BM77. Microchip-BM77SPPS3MC2-0007AA-datasheet; 2015. p. 1–28.
  • Sarkar S, Bhattacherjee S, Pal S. Extraction of respiration signal from ECG for respiratory rate estimation. IET Conf Publ. 2015;2015(CP683):336–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.