507
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Wearable sensors in the diagnosis and study of Parkinson’s disease symptoms: a systematic review

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 532-545 | Received 12 Dec 2020, Accepted 21 Apr 2021, Published online: 01 Jun 2021

References

  • Lang A, Lozano A. Parkinson’s Disease. N Engl J Med. 1998;339:1130–1143.
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013.
  • William D, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889–909.
  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–376.
  • Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901–905.
  • Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2978-3-030-68080-;30(7):357–364.
  • Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46:S30–S33.
  • Eriksen JL, Przedborski S, Petrucelli L. Gene dosage and pathogenesis of Parkinson’s disease. Trends Mol Med. 2005;11(3):91–96.
  • Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–474.
  • Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318–324.
  • Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Age Res Rev. 2018;42:72–85.
  • Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548.
  • Scherbaum R, Hartelt E, Kinkel M, et al. Parkinson’s disease multimodal complex treatment improves motor symptoms, depression and quality of life. J Neurol. 2020;267(4):954–965.
  • Sánchez-Ferro Á, Elshehabi M, Godinho C, et al. New methods for the assessment of Parkinson’s disease (2005 to 2015). Mov Disord. 2016;31(9):1283–1292.
  • Milosevic B, Leardini A, Farella E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison. BioMed Eng OnLine. 2020;19(1):25.
  • Suquilanda-Pesántez JD, Zambonino-Soria MC, López-Ramos DE, et al. Prediction of Parkinson’s disease severity based on Gait signals using a neural network and the Fast Fourier Transform. In: Botto-Tobar M, Cruz H, Díaz Cadena A, editors. Artificial intelligence, computer and software engineering advances. CIT 2020. Advances in intelligent systems and computing, vol. 1326. Cham: Springer; 2021. DOI:https://doi.org/10.1978-3-030-68080-/978-3-030-68080-0_1
  • Vásquez-Ucho PA, Villalba-Meneses GF, Pila-Varela KO, et al. Analysis and evaluation of the systems used for the assessment of the cervical spine function: a systematic review. J Med Eng Technol. DOI:https://doi.org/10.1080/03091902.2021.1907467
  • Jalloul N. Wearable sensors for the monitoring of movement disorders. Biomed J. 2018;41(4):249–253.
  • Patel M, Pavic A, Goodwin VA. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: a scoping review. Gait Posture. 2020;76:110–121.
  • Erika D, Juri T, Eduardo P, et al. Characterization of a low-cost markerless system for 3D gait analysis. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA) [Internet]. Bari, Italy: IEEE; 2020. p. 1–6; [cited 2020 Sep 24]. Available from: https://ieeexplore.ieee.org/document/9137236/
  • Rahimian P, Kearney JK. Optimal camera placement for motion capture systems. IEEE Trans Vis Comput Graph. 2017;23(3):1209–1221.
  • Qiu S, Wang H, Li J, et al. Towards wearable-inertial-sensor-based gait posture evaluation for subjects with unbalanced gaits. Sensors. 2020;20(4):1193.
  • Knippenberg E, Verbrugghe J, Lamers I, et al. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy. J NeuroEng Rehabil. 2017;14(1):61.
  • Bethi SR, RajKumar A, Vulpi F, et al. Wearable inertial sensors for exergames and rehabilitation. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. Montreal, Canada: IEEE; 2020. p. 4579–4582; [cited 2020 Sep 14]. Available from: https://ieeexplore.ieee.org/document/9175428/
  • Storm FA, Cesareo A, Reni G, et al. Wearable inertial sensors to assess gait during the 6-minute walk test: a systematic review. Sensors. 2020;20(9):2660.
  • Nagymáté G, Kiss RM. Application of OptiTrack motion capture systems in human movement analysis: a systematic literature review. Recent Innov Mechatron. 1970;5(1):1–9.
  • Tarni D. Wearable sensors used for human gait analysis. Rom J Morphol Embryol. 2016;57(2):373–382.
  • Iosa M, Picerno P, Paolucci S, et al. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2016;13(7):641–659.
  • Yu X, Qiu H, Xiong S. A novel hybrid deep neural network to predict pre-impact fall for older people based on wearable inertial sensors. Front Bioeng Biotechnol. 2020;8:63.
  • Lopez-Nava IH, Munoz-Melendez A. Wearable inertial sensors for human motion analysis: a review. IEEE Sens J. 2016;16(22):7821–7834.
  • Tomiati N, Colombo A, Magnani G. A nonlinear model of bicycle shimmy. Veh Syst Dyn. 2019;57(3):315–335.
  • Lattanzi E, Freschi V. Evaluation of human standing balance using wearable inertial sensors: a machine learning approach. Eng Appl Artif Intell. 2020;94:103812.
  • Chen S, Lach J, Lo B, et al. Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE J Biomed Health Inform. 2016;20(6):1521–1537.
  • Ancillao A, Tedesco S, Barton J, et al. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors. 2018;18(8):2564.
  • Vienne A, Barrois RP, Buffat S, et al. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8:817.
  • Shao X, Shi Y. Neural adaptive control for MEMS gyroscope with full-state constraints and quantized input. IEEE Trans Ind Inf. 2020;16(10).
  • Lian K-Y, Hsu W-H, Balram D, et al. A real-time wearable assist system for upper extremity throwing action based on accelerometers. Sensors. 2020;20(5):1344.
  • Noamani A, Nazarahari M, Lewicke J, et al. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med Eng Phys. 2020;77:53–59.
  • Chen C-J, Lin Y-T, Lin C-C, et al. Rehabilitation system for limbs using IMUs. In: 2020 21st International Symposium on Quality Electronic Design (ISQED) [Internet]. Santa Clara (CA): IEEE; 2020. p. 285–291; [cited 2020 Sep 24]. Available from: https://ieeexplore.ieee.org/document/9137026/
  • Marín J, Blanco T, de la Torre J, et al. Gait analysis in a box: a system based on magnetometer-free IMUs or clusters of optical markers with automatic event detection. Sensors. 2020;20(12):3338.
  • Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health. 1998;52(6):377–384.
  • Godinho C, Domingos J, Cunha G, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J NeuroEng Rehabil. 2016;13(1):24.
  • Ossig C, Antonini A, Buhmann C, et al. Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm. 2016;123(1):57–64.
  • Lonini L, Dai A, Shawen N, et al. Wearable sensors for Parkinson’s disease: which data are worth collecting for training symptom detection models. NPJ Digit Med. 2018;1(1):64.
  • Martinez HR, Garcia-Sarreon A, Camara-Lemarroy C, et al. Accuracy of markerless 3D motion capture evaluation to differentiate between on/off status in Parkinson’s disease after deep brain stimulation. Parkinson’s Dis. 2018;2018:1–7.
  • Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J Neurol. 2018;265(8):1740–1752.
  • Channa A, Popescu N, Ciobanu V. Wearable solutions for patients with Parkinson’s disease and neurocognitive disorder: a systematic review. Sensors. 2020;20(9):2713.
  • Schlachetzki JCM, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One. 2017;12(10):e0183989.
  • Brognara L, Palumbo P, Grimm B, et al. Assessing gait in Parkinson’s disease using wearable motion sensors: a systematic review. Diseases. 2019;7(1):18.
  • Rovini E, Maremmani C, Cavallo F. Automated systems based on wearable sensors for the management of Parkinson’s disease at home: a systematic review. Telemed J E Health. 2019;25(3):167–183.
  • Gordt K, Gerhardy T, Najafi B, et al. Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: a systematic review and meta-analysis of randomized controlled trials. Gerontology. 2018;64(1):74–89.
  • Krupicka R, Viteckova S, Cejka V, et al. BradykAn: a motion capture system for objectification of hand motor tests in Parkinson Disease. In: 2017 E-Health and Bioengineering Conference (EHB) [Internet]. Sinaia, Romania: IEEE; 2017. p. 446–449; [cited 2020 Sep 24]. Available from: http://ieeexplore.ieee.org/document/7995457/
  • Bouça-Machado R, Jalles C, Guerreiro D, et al. Gait kinematic parameters in Parkinson’s disease: a systematic review. J Parkinsons Dis. 2020;10(3):843–853.
  • del Rosario Ferreira-Sánchez M, Moreno-Verdú M, Cano-de-la-Cuerda R. Quantitative measurement of rigidity in Parkinson’s disease: a systematic review. Sensors. 2020;20(3):880.
  • Stack E, Agarwal V, King R, et al. Identifying balance impairments in people with Parkinson’s disease using video and wearable sensors. Gait Posture. 2018;62:321–326.
  • Rovini E, Maremmani C, Cavallo F. How wearable sensors can support Parkinson’s disease diagnosis and treatment: a systematic review. Front Neurosci. 2017;11:555.
  • Bhidayasiri R, Sringean J, Thanawattano C. Sensor-based evaluation and treatment of nocturnal hypokinesia in Parkinson’s disease: an evidence-based review. Parkinsonism Relat Disord. 2016;22:S127–S33.
  • Delrobaei M, Baktash N, Gilmore G, et al. Using wearable technology to generate objective Parkinson’s disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1853–1863.
  • Delrobaei M, Memar S, Pieterman M, et al. Towards remote monitoring of Parkinson’s disease tremor using wearable motion capture systems. J Neurol Sci. 2018;384:38–45.
  • Abtahi M, Bahram Borgheai S, Jafari R, et al. Merging fNIRS-EEG brain monitoring and body motion capture to distinguish Parkinsons disease. IEEE Trans Neural Syst Rehabil Eng. 2020;28(6):1246–1253.
  • Morgan C, Rolinski M, McNaney R, et al. Systematic review looking at the use of technology to measure free-living symptom and activity outcomes in Parkinson’s disease in the home or a home-like environment. J Parkinsons Dis. 2020;10(2):429–454.
  • Hssayeni MD, Jimenez-Shahed J, Burack MA, et al. Wearable sensors for estimation of Parkinsonian tremor severity during free body movements. Sensors. 2019;19(19):4215.
  • Reches T, Dagan M, Herman T, et al. Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-Provoking Test. Sensors. 2020;20(16):4474.
  • Almogren A. An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology. Cluster Comput. 2019;22(S1):2309–2316.
  • Castano-Pino YJ, Gonzalez MC, Quintana-Pena V, et al. Automatic gait phases detection in Parkinson disease: a comparative study. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. Montreal, Canada: IEEE; 2020. p. 798–802; [cited 2020 Sep 26]. Available from: https://ieeexplore.ieee.org/document/9175268/
  • Heijmans M, Habets JGV, Herff C, et al. Monitoring Parkinson’s disease symptoms during daily life: a feasibility study. NPJ Parkinsons Dis. 2019;5(1):21.
  • Hssayeni MD, Jimenez-Shahed J, Burack MA, et al. Dyskinesia severity estimation in patients with Parkinson’s disease using wearable sensors and a deep LSTM network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. Montreal, Canada: IEEE; 2020. p. 6001–6004; [cited 2020 Sep 26]. Available from: https://ieeexplore.ieee.org/document/9176847/
  • Nagasubramanian G, Sankayya M, Al-Turjman F, et al. Parkinson data analysis and prediction system using multi-variant stacked auto encoder. IEEE Access. 2020;8:127004–127013.
  • Shawen N, O’Brien MK, Venkatesan S, et al. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. J NeuroEng Rehabil. 2020;17(1):52.
  • Silva de Lima AL, Smits T, Darweesh SKL, et al. Home‐based monitoring of falls using wearable sensors in Parkinson’s disease. Mov Disord. 2020;35(1):109–115.
  • Haji Ghassemi N, Hannink J, Roth N, et al. Turning analysis during standardized test using on-shoe wearable sensors in Parkinson’s disease. Sensors. 2019;19(14):3103.
  • Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results: MDS-UPDRS: Clinimetric Assessment. Mov Disord. 2008;23(15):2129–2170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.