860
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Mechanics of foot orthotics: material properties

&
Pages 627-641 | Received 19 Jun 2020, Accepted 26 May 2021, Published online: 21 Jul 2021

References

  • Nole R., Kowalsky DS, Garbalosa JC, et al. Foot Orthoses. In: Orthotics and prosthetics in rehabilitation, 3rd ed. Amsterdam: Elsevier Inc.; 2013. p. 181–218.
  • Olson W. Orthotic materials. In: Clinical biomechanics of the lower extremities. St. Louis: Mosby-Year Book; 1996. p. 307–326.
  • Mutluoglu M, Oliver TI. Diabetic foot ulcer. StatPearls Publishing LLC., 2019; [cited 2020 Feb 25]. Available from: https://europepmc.org/books/NBK537328;jsessionid=6493985E458B950D638AEC3C72272BA2.
  • Sinwar PD. The diabetic foot management – recent advance. Int J Surg. 2015;15:27–30.
  • Paton J, Jones RB, Stenhouse E, et al. The physical characteristics of materials used in the manufacture of orthoses for patients with diabetes. Foot Ankle Int. 2007;28(10):1057–1063.
  • Watkins J. Structure and function of the Musculoskeletal system. 2nd ed. Champaign: Human Kinetics; 2009.
  • Rome K. A study of the properties of materials used in podiatry. J Am Podiatr Med Assoc. 1991;81(2):73–83.
  • Yavuz M, Ersen A, Richardson M, et al. Biomechanical efficacy of shear-reducing diabetic insoles: elaborations on future design criteria. J Prosthet Orthot. 2019;31(2):82–86.
  • Sanders JE, Greve JM, Mitchell SB, et al. Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks. J Rehabil Res Dev. 1998;35(2):161–180.
  • Sanfilippo PB, Stess RM, Moss KM. Dynamic plantar pressure analysis: comparing common insole materials. J Am Podiatr Med Assoc. 1992;82(10):507–513.
  • Curryer M, Lemaire ED. Effectiveness of various materials in reducing plantar shear forces: a pilot study. J Am Podiatr Med Assoc. 2000;90(7):346–353.
  • McPoil T, Cornwall M. Effect of insole material on force and plantar pressures during walking. J Am Podiatr Med Assoc. 1992;82(8):412–416.
  • Goske S, Erdemir A, Petre M, et al. Reduction of plantar heel pressures: insole design using finite element analysis. J Biomech. 2006;39(13):2363–2370.,
  • Chen WP, Ju CW, Tang FT. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clin Biomech. 2003;18(6):17–24.
  • Lemmon D, Shiang TY, Hashmi A, et al. The effect of insoles in therapeutic footwear – a finite element approach. J Biomech. 1997;30(6):615–620.,
  • Cheung JT, Zhang M. Finite element modeling of the human foot and footwear. ABAQUS Users’ Conf. 2006;2006:145–159.
  • Ozen M, Sayman O, Havitcioglu H. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex. Acta Bioeng Biomech. 2013;15(3):19–27.
  • Cheung JT-M, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil. 2005;86(2):353–358.
  • Athanasiou KA, Liu GT, Lavery LA, et al. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Relat Res. 1998;(348):269–281.
  • Hsu Y-C, Gung Y-W, Shih S-L, et al. Using an optimization approach to design an insole for lowering plantar fascia stress-a finite element study. Ann Biomed Eng. 2008;36(8):1345–1352.
  • Anggoro PW, Saputra E, Tauviqirrahman M, et al. A 3-dimensional finite element analysis of the insole shoe orthotic for foot deformities. Int J Appl Eng Res. 2017;12(15):5254–5260.
  • Tsung BYS, Zhang M, Mak AFT, et al. Effectiveness of insoles on plantar pressure redistribution. J Rehabil Res Dev. 2004;41(6A):767–774.
  • Perry J, Burnfield JM. Gait analysis: normal and pathological function, J Sports Sci Med. 2010;9(2):353.
  • Kim K-J, Kitaoka HB, Luo Z-P, et al. In vitro simulation of the stance phase in human gait. J Musculoskelet Res. 2001;05(02):113–121.
  • Camp Faulí A, Llobell Andrés C, Porta Rosas N, et al. Physical evaluation of insole materials used to treat the diabetic foot. J Am Podiatr Med Assoc. 2008;98(3):299–238.
  • Llobell Andrés C, Porta Rosas N, Fernández MJ, et al. Mechanical characterisation of insole materials used for diabetic insole orthotics. In: Proceedings of the Fourth IASTED International Conference on Biomechanics, BioMech 2006; 2006. p. 38–43.
  • Pratt DJ, Rees PH, Rodgers C. Technical note Assessment of some shock absorbing insoles. Prosthet Orthot Int. 1986;10(1):43–45.
  • Campbell GJ, McLure M, Newell EN. Compressive behavior after simulated service conditions of some foamed materials intended as orthotic shoe insoles. J Rehabil Res Dev. 1984;21(2):57–65.
  • Campbell GJ, Newell EN, McLure M. Compression testing of foamed plastics and rubbers for use as orthotic show insoles. Prosthet Orthot Int. 1982;6(1):48–52.
  • Laing P, Deogan H, Cogley D, et al. The development of the low profile Liverpool shear transducer. Clin Phys Physiol Meas. 1992;13(2):115–124.,
  • Pollard JP, Le Quesne LP, Tappin JW. Forces under the foot. J Biomed Eng. 1983;5(1):37–40.
  • Foto JG, Birke JA. Evaluation of multidensity orthotic materials used in footwear for patients with diabetes. Foot Ankle Int. 1998;19(12):836–841.
  • Rogers KOSBI. The effect of PORON® and Plastazote® insoles on forefoot plantar pressures. Br J Pod. 2006;9(4):111–114.
  • Nicolopoulos CS, Black J, Anderson EG. Foot orthoses materials. Foot. 2000;10(1):1–3.
  • Han K, Bae K. et al. Biomechanical effect of foot orthoses on rearfoot motions and joint moment parameters in patients with flexible flatfoot. Med Sci Monit. 2019;25:5920–5928.
  • Gama NV, Ferreira A, Barros-Timmons A. Polyurethane foams: Past, present, and future. Materials. 2018;11(10):1841.
  • Eaves D. Polymer foams-trends in use and technology (Rapra Industry Analysis Report). Smithers Rapra Press; 2001.
  • D'Auria M, Davino D, et al. Polymeric foam-ferromagnet composites as smart lightweight materials. Smart Mater. Struct. 2016;25(5):055014.
  • Szycher M. Szycher’s handbook of polyurethanes. 2nd ed. Boca Raton: CRC Press; 2006.
  • Birke JA, Foto JG, Pfiefer LA. Effect of Orthosis material hardness on walking pressure in high-risk diabetes patients. J Prosthetics Orthotis. 1999;11(2):43–46.
  • Tong JWK, Ng EYK. Preliminary investigation on the reduction of plantar loading pressure with different insole materials (SRP – Slow Recovery Poron®, P – Poron®, PPF – Poron®+Plastazote, firm and PPS – Poron®+Plastazote, soft). Foot. 2010;20(1):1–6.
  • Zimny S, Reinsch B, Schatz H, et al. Effects of felted foam on plantar pressures in the treatment of neuropathic diabetic foot ulcers. Diabetes Care. 2001;24(12):2153–2154.
  • Nubé VL, Molyneaux L, Bolton T, et al. The use of felt deflective padding in the management of plantar hallux and forefoot ulcers in patients with diabetes. Foot. 2006;16(1):38–43.
  • Lord M, Hosein R. Pressure redistribution by molded inserts in diabetic footwear: a pilot study. J Rehabil Res Dev. 1994;31(3):214–221.
  • Burns J, Begg L, Vicaretti M. Comparison of orthotic materials on foot pain, comfort, and plantar pressure in the neuroischemic diabetic foot: a case report. J Am Podiatr Med Assoc. 2008;98(2):143–148.
  • Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clin Biomech. 2006;21(1):89–98.
  • Mündermann A, Nigg BM, Stefanyshyn DJ, et al. Development of a reliable method to assess footwear comfort during running. Gait Posture. 2002;16(1):38–45.
  • Creaby MW, May K, Bennell KL. Insole effects on impact loading during walking. Ergonomics. 2011;54(7):665–671.
  • Crabtree P, Dhokia VG, Newman ST, et al. Manufacturing methodology for personalised symptom-specific sports insoles. Robot Comput Integr Manuf. 2009;25(6):972–979.
  • Nagano H, Begg RK. Shoe-insole technology for injury prevention in walking. Sensors. 2018;18(5):1468.
  • Dixon SJ, Waterworth C, Smith CV, et al. Biomechanical analysis of running in military boots with new and degraded insoles. Med Sci Sports Exerc. 2003;35(3):472–479.
  • House CM, Waterworth C, Allsopp AJ, et al. The influence of simulated wear upon the ability of insoles to reduce peak pressures during running when wearing military boots. Gait Posture. 2002;16(3):297–303.,
  • Hamedi M, Salimi P, Jamshidi N. Improving cushioning properties of a 3D weft knitted spacer fabric in a novel design with NiTi monofilaments. J Ind Text. 2018;37:213–223.
  • Mohammadi H. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng H. 2011;225(7):718–722.
  • Mohammadi H, Goode D, Fradet G, et al. Proposed percutaneous aortic valve prosthesis made of cryogel. Proc Inst Mech Eng H. 2019;233(5):515–524.,
  • Millon LE, Mohammadi H, Wan WK. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J Biomed Mater Res B Appl Biomater. 2006;79(2):305–311.
  • Kermen E. New approach to foot orthotics materials: hydrogel insoles. MASc Thesis, University of British Columbia's Okanagan Campus; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.