432
Views
6
CrossRef citations to date
0
Altmetric
Review

Signal processing techniques applied to impedance cardiography ICG signals – a review

, &
Pages 243-260 | Received 28 Oct 2021, Accepted 04 Jan 2022, Published online: 18 Jan 2022

References

  • Patterson RP. Fundamentals of impedance cardiography. IEEE Eng Med Biol Mag. 1989;8(1):35–38.
  • Parry MJ, Judith M-D. Ambulatory impedance cardiography: a systematic review. Nurs Res. 2006;55(4):283–291.
  • Aparicio LS, Alfie J, Barochiner J, et al. Comparison of atenolol versus bisoprolol with noninvasive hemodynamic and pulse wave assessment. J. Am. Soc. Hypertens. 2015;9(5):390–396.
  • DeMarzo AP. Using impedance cardiography to detect asymptomatic cardiovascular disease in prehypertensive adults with risk factors. High Blood Press Cardiovasc Prev. 2013;20(2):61–67.
  • Krzesinski P, Uziębło-Życzkowska B, Gielerak G, Stańczyk A, et al. Global longitudinal two-dimensional systolic strain is associated with hemodynamic alterations in arterial hypertension. J. Am. Soc. Hypertens. 2015;9(9):680–689.
  • Morris R, Sunesara I, Darby M, et al. Impedance cardiography assessed treatment of acute severe pregnancy hypertension: a randomized trial. J Matern Fetal Neonatal Med. 2016;29(2):171–176.
  • Rada MA, Cuffaro PE, Galarza CR, et al. Predictive value of non-invasive hemodynamic measurement by means of impedance cardiography in hypertensive subjects older than 50 years of age. Clin Exp Hypertens. 2014;36(5):280–284.
  • Cave BE, Hough AR. Impedance cardiography to guide antihypertensive treatment in a patient with difficult-to-TReat hypertension. Ann Clin Exp Hypertension. 2017;5(2):1050.
  • Aoka Y, Hagiwara N, Kasanuki H. Heterogeneity of hemodynamic parameters in untreated primary hypertension, and individualization of antihypertensive therapy based on noninvasive hemodynamic measurements. Clin Exp Hypertens. 2013;35(1):61–66.
  • Barochiner J, Aparicio LS, Alfie J, et al. Hemodynamic characterization of hypertensive patients with an exaggerated orthostatic blood pressure variation. Clin Exp Hypertens. 2018;40(3):287–291.
  • Chin KM, Rubin LJ, Channick R, et al. Association of N-Terminal pro brain natriuretic peptide and long-term outcome in patients with pulmonary arterial hypertension. Circulation. 2019;139(21):2440–2450.,
  • Krzesiński P, Gielerak GG, Kowal JJ. A "patient-tailored" treatment of hypertension with use of impedance cardiography: a randomized, prospective and controlled trial. Med Sci Monit. 2013;19:242–250.
  • Xiajuan Z, Ding D, Yanyan H, et al. Impedance cardiographic hemodynamic variables and hypertension in elderly Han residents. Upsala J Med Sci. 2013;118(2):80–86.
  • Ferrario CM, Flack JM, Strobeck JE, et al. Individualizing hypertension treatment with impedance cardiography: a meta-analysis of published trials. Ther. Adv. Cardiovasc. Dis. 2010;4(1):5–16.
  • Leão RN, Da Silva PM. Impedance cardiography in the evaluation of patients with arterial hypertension. Int J Cardiovasc Sci. 2019;32(1):61–69.
  • Staelens A, Tomsin K, Grieten L, et al. Non-invasive assessment of gestational hemodynamics: benefits and limitations of impedance cardiography versus other techniques. Expert Rev Med Devices. 2013;10(6):765–779.
  • Oben J, Tomsin K, Mesens T, et al. Maternal cardiovascular profiling in the first trimester of pregnancies complicated with gestation-induced hypertension or fetal growth retardation: a pilot study. J Matern Fetal Neonatal Med. 2014;27(16):1646–1651.
  • Ram M, Ram M, Lavie A, Lev S, et al. Casting doubt on the value of assessing the cardiac index in pregnancy. J Matern Fetal Neonatal Med. 2017;31(23):3080–3084.
  • Tomsin K, Mesens T, Molenberghs G, et al. Characteristics of heart, arteries, and veins in low and high cardiac output preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):218–222.
  • Andreas M, Kuessel L, Kastl SP, et al. Bioimpedance cardiography in pregnancy: a longitudinal cohort study on hemodynamic pattern and outcome. BMC Pregnancy Childbirth. 2016;16(1):128–129.
  • Morris R, Sunesara I, Rush L, et al. Maternal hemodynamics by thoracic impedance cardiography for normal pregnancy and the postpartum period. Obstet Gynecol. 2014;123(2):318–324.
  • Liu Y, Pian-Smith MCM, Leffert LR, et al. Continuous measurement of cardiac output with the electrical velocimetry method in patients under spinal anesthesia for cesarean delivery. J Clin Monit Comput. 2015;29(5):627–634.
  • Han S, Lee JH, Kim G, et al. Bioreactance is not interchangeable with thermodilution for measuring cardiac output during adult liver transplantation. PLoS One. 2015;10(5):e0127981.
  • Guinot P-G, Bernard E, Defrancq F, et al. Mini-fluid challenge predicts fluid responsiveness during spontaneous breathing under spinal anaesthesia: an observational study. Eur. J. Anaesthesiol. 2015;32(9):645–649.
  • Labib HAA, Hussien RM, Salem YA. Monitoring the correlation between passive leg-raising maneuver and fluid challenge in pediatric cardiac surgery patients using impedance cardiography,” Egypt. Egypt J Cardiothorac Anesth. 2016;10(1):17.
  • Lee JY, Kim JY, Choi CH, et al. The ability of stroke volume variation measured by a noninvasive cardiac output monitor to predict fluid responsiveness in mechanically ventilated children. Pediatr Cardiol. 2014;35(2):289–294.
  • Borodiciene J, Gudaityte J, Macas A. Lithotomy versus jack-knife position on haemodynamic parameters assessed by impedance cardiography during anorectal surgery under low dose spinal anaesthesia: a randomized controlled trial. BMC Anesthesiol. 2015;15(1):1–9.
  • Kim J-Y, Kim B-R, Lee K-H, et al. Comparison of cardiac output derived from FloTrac™/Vigileo™ and impedance cardiography during major abdominal surgery . J Int Med Res. 2013;41(4):1342–1349.
  • Smorenberg A, Lust EJ, Beishuizen A, et al. Systolic time intervals vs invasive predictors of fluid responsiveness after coronary artery bypass surgery†. Eur J Cardiothorac Surg. 2013;44(5):891–897.
  • Germain MJ, Joubert J, O'Grady D, et al. Comparison of stroke volume measurements during hemodialysis using bioimpedance cardiography and echocardiography. Hemodial Int. 2018;22(2):201–208.
  • Yoshihara F, Kishida M, Ogawa K, et al. High stroke volume variation is an independent predictor for decreased blood pressure during hemodialysis. Ther Apher Dial. 2017;21(2):166–172.
  • Khraim F, Pike R, Williams J. Using non-invasive impedance cardiography to assess cardiac hemodynamic measures of persons with heart failure. Can J Cardiol. 2014;30(10):S371.
  • Packer M, Abraham WT, Mehra MR, et al. Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure. J Am Coll Cardiol. 2006;47(11):2245–2252.
  • Facchini C, Malfatto G, Giglio A, et al. Lung ultrasound and transthoracic impedance for noninvasive evaluation of pulmonary congestion in heart failure. J Cardiovasc Med (Hagerstown). 2016;17(7):510–517.
  • Sadauskas S, Naudžiūnas A, Unikauskas A, et al. Applicability of impedance cardiography during heart failure flare-ups. Med Sci Monit. 2016;22:3614–3622.
  • Chen SJ, Gong Z, Duan Q. Evaluation of heart function with impedance cardiography in acute myocardial infarction patients. Int J Clin Exp Med. 2014;7(3):719–727.
  • Chabchoub S, Mansouri S, Ben Salah R. Diagnosis of mitral insufficiency using impedance cardiography technique ICG. J Electr Bioimpedance. 2016;7(1):28–34.
  • Daralammouri Y, Ayoub K, Badrieh N, et al. A hybrid approach for quantifying aortic valve stenosis using impedance cardiography and echocardiography. BMC Cardiovasc. Disord. 2016;16(1):1–6.
  • Nowakowski A, Pałko T, Wtorek J . Advances in electrical impedance methods in medical diagnostics. Bull Polish Acad Sci Tech Sci. 2005;53.
  • Klimczak A, Budzikowski AS, Rosiak M, et al. Influence of atrioventricular optimization on hemodynamic parameters and quality of life in patients with dual chamber pacemaker with ventricular lead in right ventricular outflow tract. Ann Noninvasive Electrocardiol. 2014;19(5):471–476.
  • Krychtiuk KA, Nürnberg M, Volker R, et al. Effects of AV-delay optimization on hemodynamic parameters in patients with VDD pacemakers. Wien Klin Wochenschr. 2014;126(9–10):270–277.
  • Summers RL, Shoemaker WC, Peacock WF, et al. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med. 2003;10(6):669–680.
  • Woltjer HH, Bogaard HJ, de Vries PM. The technique of impedance cardiography. Eur. Heart J. 1997;18(9):1396–1403.
  • Ben Salah R, Marrakchi A, Ellouze N. Cardiac diseases quantification of by temporal and cepstral analysis of plethysmographic signal. 1989;2(3):204–211.
  • Meijer JH, Boesveldt S, Elbertse E, et al. Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography. Physiol Meas. 2008;29(6):S383–S391.
  • Meijer JH, Elbertse E, Boesveldt S, et al. Using the initial systolic time interval to assess cardiac autonomic nervous function in Parkinson’s disease. J Electr Bioimpedance. 2011; 2(1):98–101.
  • Takada K, Fujinami T, Senda K, et al. Clinical study of ‘a waves’ (atrial waves) in impedance cardiograms. Am Heart J. 1977;94(6):710–717.
  • Lababidi Z, Ehmke DA, Durnin RE, et al. The first derivative thoracic impedance cardiogram. Circulation. 1970;41(4):651–658.
  • Goldstein DS, Cannon RO, Zimlichman R, et al. Clinical evaluation of impedance cardiography. Clin Physiol. 1986;6(3):235–251. TB00622.X.
  • Ono T, Miyamura M, Yasuda Y, et al. Beat-to-beat evaluation of systolic time intervals during bicycle exercise using impedance cardiography. Tohoku J Exp Med. 2004;203(1):17–29.
  • Dehkordi P, Khosrow-Khavar F, Di Rienzo M, et al. Comparison of different methods for estimating cardiac timings: a comprehensive multimodal echocardiography investigation. Front Physiol. 2019;10:1–11.
  • Sherwood A, Allen MT, Fahrenberg J, et al. Methodological guidelines for impedance cardiography. Psychophysiology. 1990;27(1):1–23.
  • Visser KR, Mook GA, van der Wall E, et al. Theory of the determination of systolic time intervals by impedance cardiography. Biol Psychol. 1993;36(1-2):43–50.
  • van Lien R, Schutte NM, Meijer JH, et al. Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions. Int J Psychophysiol. 2013;87(1):60–69.
  • Seery MD, Kondrak CL, Streamer L, et al. Preejection period can be calculated using R peak instead of Q. Psychophysiology. 2016;53(8):1232–1240.
  • Berntson GG, Lozano DL, Chen YJ, et al. Where to Q in PEP. Psychophysiology. 2004;41(2):333–337.
  • Albert NM. Bioimpedance cardiography measurements of cardiac output and other cardiovascular parameters. Crit Care Nurs Clin North Am. 2006;18(2):195–202.
  • Meijer JH, Smorenberg A, Lust EJ, et al. Assessing cardiac preload by the initial systolic time interval obtained from impedance cardiography. J. Electr. Bioimpedance. 2010;1(1):80–83.
  • Silvia PJ, McHone AN, Mironovová Z, et al. RZ interval as an impedance cardiography indicator of effort-related cardiac sympathetic activity. Appl Psychophysiol Biofeedback. 2021;46(1):83–90.
  • van Eijnatten MAJM, van Rijssel MJ, Peters RJA, et al. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J Electr Bioimpedance. 2014;5(1):2–8.
  • Fellahi J-L, Fischer M-O. Electrical bioimpedance cardiography: an old technology with new hopes for the future. J Cardiothorac Vasc Anesth. 2014;28(3):755–760.
  • Bernstein D P. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimpedance. 2009;1(1):2–17.
  • Kubicek WG, Patterson RP, Witsoe DA. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann NY Acad Sci. 1970;170(2 International):724–732.
  • Bernstein DP, Lemmens HJM. Stroke volume equation for impedance cardiography. Med Biol Eng Comput. 2005;43(4):443–450.
  • Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986;14(10):904–909.
  • Noda K, Endo H, Kadosaka T, et al. Comparison of the measured pre-ejection periods and left ventricular ejection times between echocardiography and impedance cardiography for optimizing cardiac resynchronization therapy. J. Arrhythmia. 2017;33(2):130–133.
  • McIntyre JP, Ellyett KM, Mitchell EA, et al. Validation of thoracic impedance cardiography by echocardiography in healthy late pregnancy. BMC Pregnancy Childbirth. 2015;15(1):1–9.
  • Burlingame J, Ohana P, Aaronoff M, et al. Noninvasive cardiac monitoring in pregnancy: impedance cardiography versus echocardiography. J Perinatol. 2013;33(9):675–680.
  • Kaszuba E, Scheel S, Odeberg H,et al. Comparing impedance cardiography and echocardiography in the assessment of reduced left ventricular systolic function. BMC Res Notes. 2013;6(1):1–5.
  • Cheung H, Dong Q, Dong R, et al. Correlation of cardiac output measured by non-invasive continuous cardiac output monitoring (NICOM) and thermodilution in patients undergoing off-pump coronary artery bypass surgery. J Anesth. 2015;29(3):416–420.
  • Faini A, Omboni S, Tifrea M, et al. Cardiac index assessment: validation of a new non-invasive very low current thoracic bioimpedance device by thermodilution. Blood Press. 2014;23(2):102–108.
  • Kupersztych HE, Teboul JL, Artigas A, et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br. J. Anaesth. 2013;111(6):961–966.,
  • Bhavya G, Nagaraja PS, Singh NG, et al. Comparison of continuous cardiac output monitoring derived from regional impedance cardiography with continuous thermodilution technique in cardiac surgical patients. Ann Card Anaesth. 2020;23(2):189–192.
  • Lorne E, Mahjoub Y, Diouf M, et al. Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal doppler. Br J Anaesth. 2014;113(4):596–602.
  • Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30(8):501–508.
  • Mansouri S, Alhadidi T, Chabchoub S, et al. Impedance cardiography: recent applications and developments. Biomed Res. 2018;29(19):3542–3552.
  • Borzage M, Heidari K, Chavez T, et al. Measuring stroke volume: impedance cardiography vs phase-contrast magnetic resonance imaging. Am J Crit Care. 2017;26(5):408–415.
  • Trinkmann F, Berger M, Doesch C, et al. Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output. J Clin Monit Comput. 2016;30(4):399–408.
  • Sasaki K, Mutoh T, Mutoh T, et al. Electrical velocimetry for noninvasive cardiac output and stroke volume variation measurements in dogs undergoing cardiovascular surgery. Vet Anaesth Analg. 2017;44(1):7–16.
  • Cybulski G, Strasz A, Niewiadomski W, et al. Impedance cardiography: recent advancements. Cardiol J. 2012;19(5):550–556.
  • Patterson RP. Impedance cardiography: what is the source of the signal? J Phys Conf Ser. 2010; 224(1):1–4.
  • Sodolski T, Kutarski A. Impedance cardiography: a valuable method of evaluating haemodynamic parameters. Folia Cardiol. 2007;14(2):115–126.
  • Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng. 2014;2014:381251–381228.
  • Anand G, Yu Y, Lowe A, et al. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiol Meas. 2021;42(3):03TR01.
  • Cybulski G, Niewiadomski W, Gąsiorowska A, et al. Signal quality evaluation in ambulatory impedance cardiography. IFMBE Proc. 2007;17:590–592
  • Cybulski G, Niewiadomski W, Aksler M, et al. Identification of the sources of artefacts in the Holter-type impedance cardiography recordings. IFMBE Proc. 2011;37:1272–1274.
  • Cybulski G, Młyńczak G, Żyliński M, et al. The quality of automatic artifact identification in ambulatory impedance cardiography monitoring. IFMBE Proc. 2017;65:165–168.
  • Nagel JH, Shyu LY, Reddy SP, et al. New signal processing techniques for improved precision of noninvasive impedance cardiography. Ann Biomed Eng. 1989;17(5):517–534.
  • Ishiguro T, Umezu A, Yasuda Y, et al. Modified scaled Fourier linear combiner in thoracic impedance cardiography. Comput Biol Med. 2006;36(9):997–1013.
  • Pandey VK, Pandey PC. Wavelet based cancellation of respiratory artifacts in impedance cardiography. 2007 15th Int. Conf. Digit. Signal Process, DSP; 2007 July 1–4; Cardiff, UK. IEEE; p.191–194, 2007.
  • Sebastian T, Pandey PC, Naidu SMM et al. Wavelet based denoising for suppression of respiratory and motion artifacts in impedance cardiography. Computing in Cardiology. 2011;38:501–504.
  • Dromer O, Alata O, Bernard O. Impedance cardiography filtering using scale Fourier linear combiner based on RLS algorithm. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6930–6933.
  • De Ridder S, Neyt X, Pattyn N, et al. Comparison between EEMD, wavelet and FIR denoising: influence on event detection in impedance cardiography. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:806–809.
  • Pandey VK, Pandey PC, Burkule NJ, et al. Adaptive filtering for suppression of respiratory artifact in impedance cardiography. 2011 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. [cited 2021 Sep 30]. Available from: https://www.academia.edu/5541165/Adaptive_filtering_for_suppression_of_respiratory_artifact_in_impedance_cardiography.
  • Hu X, Chen X, Ren R, et al. Adaptive filtering and characteristics extraction for impedance cardiography. J. Fiber Bioeng. Informatics. 2014;7(1):81–90.
  • Choudhari PC, Panse MS. Artifact removal from the radial bioimpedance signal using adaptive wavelet packet transform. Predatory J. 2014;4(7):95–101.
  • Pranali CC, Panse MS. Denoising of radial bioimpedance signals using adaptive wavelet packet transform and KALMAN filter. IOSR J. VLSI Signal Process. 2015;5(1):01–08.
  • Chabchoub S, Mansouri S, Ben Salah R. Impedance cardiography signal denoising using discrete wavelet transform. Australas Phys Eng Sci Med. 2016;39(3):655–663.
  • Mallam M, Rao KCB. Efficient reference-free adaptive artifact cancellers for impedance cardiography based remote health care monitoring systems. Springerplus. 2016;5(1):1–17.
  • Stepanov R, Podtaev S, Frick P, et al. Beat-to-beat cardiovascular hemodynamic parameters based on wavelet spectrogram of impedance data. Biomed. Signal Process. Control. 2017;36:50–56.
  • Cieslak M, Ryan WS, Babenko V, et al. Quantifying rapid changes in cardiovascular state with a moving ensemble average. Psychophysiology. 2018;55(4):1–17.
  • Forouzanfar M, Baker FC, Colrain IM, et al. Automatic analysis of pre-ejection period during sleep using impedance cardiogram. Psychophysiology. 2019;56(7):e13355.
  • Forouzanfar M, Baker FC, Colrain IM, et al. Automatic artifact detection in impedance cardiogram using pulse similarity index. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:2629–2632.
  • Sheikh SA, Shah A, Levantsevych O, et al. An open-source automated algorithm for removal of noisy beats for accurate impedance cardiogram analysis. Physiol. Meas. 2020;41(7):075002.
  • Benabdallah H, Kerai S. Respiratory and motion artefacts removal from ICG signal using denoising techniques for hemodynamic parameters monitoring. TS. 2021;38(4):919–928.
  • Xie Y, Song R, Yang D, et al. Motion robust ICG measurements using a two-step spectrum denoising method. Physiol Meas. 2021;42(9):095004.
  • Lozano DL, Norman G, Knox D, et al. Where to B in dZ/dt. Psychophysiology. 2007;44(1):113–119.
  • DeMarzo AP, Lang RM. A new algorithm for improved detection of aortic valve opening by impedance cardiography. Comput Cardiology 1996; 1996 September 8-11; Indianapolis, IN, USA. IEEE; pp. 373–376; 1996.
  • Shuguang Z, Yanhong F, Hailong Z, et al. Detection of impedance cardiography’s characteristic points based on wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005;2005:2730–2732.
  • Rizzi M, D`Aloia M, Castagnolo B. High sensitivity and noise immune method to detect impedance cardiography characteristic points using wavelet transform. J Appl Sci. 2009;9(8):1412–1421.
  • Podtaev S, Stepanov R, Dumler A, et al. Wavelet analysis of the impedance cardiogram waveforms. J Phys: Conf Ser. 2012;407(1):012003.
  • Stepanov R, Podtaev S, Dumler A, et al. Assessment of cardiac time intervals by wavelet transform of the impedance cardiogram. Technol Health Care. 2016;24 Suppl 2(Suppl 2):S803–S809.
  • Liu S, Yue H, Yang L, et al. Study on cardiac impedance signal feature point extraction. Proc. 2017 IEEE 3rd Inf. Technol. Mechatronics Eng. Conf. ITOEC 2017, vol. 2017-January, pp. 790–793, Nov. 2017.
  • Carvalho P, Paiva RP, Henriques J, et al. Robust characteristic points for ICG: definition and comparative analysis. BIOSIGNALS 2011 - Proc. Int. Conf. Bio-Inspired Syst. Signal Process, pp. 161–168, 2011.
  • Árbol JR, Perakakis P, Garrido A, et al. Mathematical detection of aortic valve opening (B point) in impedance cardiography: a comparison of three popular algorithms. Psychophysiology. 2017;54(3):350–357.
  • Forouzanfar M, Baker FC, de Zambotti M, et al. Toward a better noninvasive assessment of preejection period: a novel automatic algorithm for B-point detection and correction on thoracic impedance cardiogram. Psychophysiology. 2018;55(8):e13072.
  • Naidu SMM, Pandey PC, Pandey V. Automatic detection of characteristic points in impedance cardiogram. Comput. Cardiol. 2011;38:497–500
  • Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32(3):230–236.
  • Naidu SMM, Bagal UR, Pandey PC, et al. Detection of characteristic points of impedance cardiogram and validation using Doppler echocardiography. 11th IEEE India Conf. Emerg. Trends Innov. Technol, INDICON 2014, Feb. 2015.
  • Bagal UR, Pandey PC, Naidu SMM, et al. Detection of opening and closing of the aortic valve using impedance cardiography and its validation by echocardiography. Biomed Phys Eng Express. 2017;4(1):015012.
  • Ben Salah R, Alhadidi T, Mansouri S, et al. A new method for cardiac diseases diagnosis. ABB. 2015;06(04):311–319.
  • Chabchoub S, Mansouri S, Ben Salah R. Detection of valvular heart diseases using impedance cardiography ICG. Biocybern. Biomed Eng. 2018;38(2):251–261.
  • Salah IB, De la Rosa R, Ouni K, et al. Automatic diagnosis of valvular heart diseases by impedance cardiography signal processing. Biomed Signal Process Control. 2020;57:101758.
  • Ghosh S, Chattopadhyay BP, Roy RM, et al. Detection and localization of coronary arterial lesion with the aid of impedance cardiography and artificial neural network. 2020 IEEE 20th Int. Conf. Bioinforma. Bioeng., pp. 667–674, Oct. 2020.
  • Muñoz JE, Pan Y, Ge S, et al. Novel characterization method of impedance cardiography signals using time-frequency distributions. Med Biol Eng Comput. 2018;56(10):1757–1770.
  • Muñoz JE, Gambús P, Jensen EW, et al. Time-frequency features for impedance cardiography signals during anesthesia using different distribution kernels. Methods Inf Med. 2018;57(1):e1–e9.
  • Naidu SMM, Bagal UR, Pandey PC, et al. Monitoring of stroke volume through impedance cardiography using an artificial neural network. 2015 21st Natl. Conf. Commun. NCC 2015, vol. 2015, no. 1570057501, pp. 2–7, 2015.
  • Naidu SMM, Pandey PC, Bagal UR, et al. Beat-to-beat estimation of stroke volume using impedance cardiography and artificial neural network. Med Biol Eng Comput. 2018;56(6):1077–1089.
  • Benouar S, Hafid A, Kedir-Talha M, et al. Classification of impedance cardiography dZ/dt complex subtypes using pattern recognition artificial neural networks. Biomed Tech (Berl)). 2021;66(5):515–527.
  • Benouar S, Hafid A, Attari M, et al. Systematic variability in ICG recordings results in ICG complex subtypes – steps towards the enhancement of ICG characterization. J Electr Bioimpedance. 2018;9(1):72–82.
  • Parvaneh S, Rubin J, Babaeizadeh S, et al. Cardiac arrhythmia detection using deep learning: a review. J Electrocardiol. 2019;57:S70–S74.
  • Murat F, Yildirim O, Talo M, et al. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput Biol Med. 2020;120:103726.
  • Ebrahimi Z, Loni M, Daneshtalab M, et al. A review on deep learning methods for ECG arrhythmia classification. Expert Syst Appl. X. 2020;7:100033.
  • Hong S, Zhou Y, Shang J, et al. Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput Biol Med. 2020;122:103801.
  • Movahedi F, Coyle JL, Sejdic E, et al. Deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inform. 2018;22(3):642–652.
  • Craik A, He Y, Contreras-Vidal JL, et al. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16(3):031001.
  • Gao Z, Dang W, Wang X, et al. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn. 2021;15(3):369–388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.