116
Views
1
CrossRef citations to date
0
Altmetric
Innovations

Design considerations for piezocomposite materials for electrical stimulation in medical implants

, , , &
Pages 402-414 | Received 17 Jun 2021, Accepted 18 May 2022, Published online: 08 Jun 2022

References

  • Ekegren CL, Edwards ER, de Steiger R, et al. Incidence, costs and predictors of Non-Union, delayed union and Mal-Union following long bone fracture. Int J Environ Res Public Health. 2018;15(12):152845.
  • Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech. 2011;44(2):213–220.
  • Gebauer D, Mayr E, Orthner E, et al. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol. 2005;31(10):1391–14 02.
  • Leighton R, Watson JT, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and Meta-analysis. Injury. 2017;48(7):1339–1347.
  • Heckman JD, Sarasohn-Kahn J. The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Jt Dis NY N. 1997;56(1):63–72.
  • Aleem IS, Aleem I, Evaniew N, et al. Efficacy of electrical stimulators for bone healing: a meta-analysis of randomized Sham-Controlled trials. Sci Rep. 2016;6:31724.
  • Brighton CT, Shaman P, Heppenstall RB, et al. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop Relat Res. 1995;(321):223–234.
  • Cottrill E, Pennington Z, Ahmed AK, et al. The effect of electrical stimulation therapies on spinal fusion: a cross-disciplinary systematic review and Meta-analysis of the preclinical and clinical data. J Neurosurg Spine. 2019:1–21. DOI:https://doi.org/10.3171/2019.5.SPINE19465
  • Kahanovitz N. The use of adjunctive electrical stimulation to enhance the healing of spine fusions: Spine. Spine (Phila Pa 1976). 1996;21(21):2523–2525.
  • Kucharzyk DW. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high-risk spinal fusion population. Spine. 1999;24(5):465–468.
  • Toth JM, Seim HB, Schwardt JD, et al. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine. 2000;25(20):2580–2587.
  • Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine. 1994;19(21):2393–2398.
  • Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine (Phila Pa 1976). 1996;21(21):2479–2483.
  • Evans RD, Foltz D, Foltz K. Electrical stimulation with bone and wound healing. Clin Podiatr Med Surg. 2001;18(1):79–95.
  • Haddad JB, Obolensky AG, Shinnick P. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J Altern Complement Med. 2007;13(5):485–490.
  • Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 2015;24:12–23.
  • Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct. 2007;16(3):R1–R21.
  • Goetzinger NC, Tobaben EJ, Domann JP, et al. Composite piezoelectric spinal fusion implant: effects of stacked generators. J Biomed Mater Res B Appl Biomater. 2016;104(1):158–164.
  • Tobaben EJ, Goetzinger NC, Domann JP, et al. Stacked macro fiber piezoelectric composite generator for a spinal fusion implant. Smart Mater Struct. 2015;24(1):017002.
  • Friis E, Galvis S, Arnold P. DC stimulation for spinal fusion with a piezoelectric composite material interbody implant: an ovine pilot study. Poster presented at: Society for Biomaterials 2015 Annual Meeting; 2015 Apr 15; Charlotte (NC). Available from: http://abstracts.biomaterials.org/data/papers/2015/abstracts/809.pdf
  • Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev. 2014;1(4):041301.
  • Mitrovic MP, Carman GK, Straub F. Response of piezoelectric stack actuators under combined electro-mechanical loading. Int J Solids Struct. 2001;38(24–25):4357–4374.
  • Pritchard J, Bowen C, Lowrie F. Multilayer actuators: review. Br Ceram Trans. 2001;100(6):265–273.
  • Xu TB, Siochi EJ, Kang JH, et al. Energy harvesting using a PZT ceramic multilayer stack. Smart Mater Struct. 2013;22(6):065015.
  • Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech Syst Signal Process. 2008;22(3):721–734.
  • Zhao S, Erturk A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens Actuators Phys. 2014;214:58–65.
  • Platt SR, Farritor S, Garvin K, et al. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans Mechatron. 2005;10(4):455–461.
  • Platt SR, Farritor S, Haider H. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans Mechatron. 2005;10(2):240–252.
  • Krech ED, Cadel ES, Barrett RM, et al. Effect of compliant layers within piezoelectric composites on power generation providing electrical stimulation in low frequency applications. J Mech Behav Biomed Mater. 2018;88:340–34.
  • Krech ED, LaPierre LJ, Tuncdemir S, et al. Design considerations for piezoelectrically powered electrical stimulation: the balance between power generation and fatigue resistance. J Mech Behav Biomed Mater. 2022;126:104976.
  • Cadel ES, Krech ED, Arnold PM, et al. Stacked PZT discs generate necessary power for bone healing through electrical stimulation in a composite spinal fusion implant. Bioeng Basel Switz. 2018;5(4):90.
  • Krech ED, Barrett RM, Cadel ES, et al. Power generation amplification and stack toughening via compliant layer interdigitation. Paper No: SMASIS2018-8043, V002T07A010. 2018.
  • Cadel ES, Frazer LL, Krech ED, et al. Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices. J Biomed Mater Res A. 2019;107(12):2610–2618.
  • Isaacson BM, Bloebaum RD. Bone bioelectricity: what have we learned in the past 160 years? J Biomed Mater Res A. 2010;95(4):1270–1279.
  • Arshad R, Angelini L, Zander T, et al. Spinal loads and trunk muscles forces during level walking – a combined in vivo and in silico study on six subjects. J Biomech. 2017;70:113–123.
  • Rohlmann A, Bergmann G, Graichen F. Loads on an internal spinal fixation device during walking. J Biomech. 1997;30(1):41–47.
  • Duda GN, Schneider E, Chao EYS. Internal forces and moments in the femur during walking. J Biomech. 1997;30(9):933–941.
  • Schneider E, Michel MC, Genge M, et al. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 2001;34(7):849–857.
  • Pessia ZR, Cunningham CA, Krech ED, et al. Power amplification via compliant layer interdigitation and dielectrophoretic structuring of PZT particle composites. Smart Mater Struct. 2020;29(7):075004.
  • Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to “Wolff's Law”: a critical review. Med Eng Phys. 2009;31(7):733–741.
  • Gittens RA, Olivares-Navarrete R, Rettew R, et al. Electrical polarization of titanium surfaces for the enhancement of osteoblast differentiation. Bioelectromagnetics. 2013;34(8):599–612.
  • Kim SB, Park H, Kim SH, et al. Comparison of MEMS PZT cantilevers based on 31 and 33 modes for vibration energy harvesting. J Microelectromech Syst. 2013;22(1):26–33.
  • Shahab S, Zhao S, Erturk A. Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting. Energy Technol. 2018;6(5):935–942.
  • Ali SF, Friswell MI, Adhikari S. Analysis of energy harvesters for highway bridges. J Intell Mater Syst Struct. 2011;22(16):1929–1938.
  • El-Hami M, Glynne-Jones P, White NM, et al. Design and fabrication of a new vibration-based electromechanical power generator. Sens Actuators Phys. 2001;92(1–3):335–342.
  • Roundy S, Leland ES, Baker J, et al. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005;4(1):28–36.
  • Shen D, Park JH, Noh JH, et al. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators Phys. 2009;154(1):103–108.
  • Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574.
  • Ong WH, Chiu WK, Russ M, et al. Integrating sensing elements on external fixators for healing assessment of fractured femur. Struct Control Health Monit. 2016;23(12):1388–1404.
  • Papi E, Koh WS, McGregor AH. Wearable technology for spine movement assessment: a systematic review. J Biomech. 2017;64:186–197.
  • van Bilsen MWT, Ullrich C, Ferraris L, et al. Diagnostic accuracy of CT scan-based criteria compared with surgical exploration for the analysis of cervical fusion and nonunion. J Neurosurg Spine. 2020:1–7. DOI:https://doi.org/10.3171/2019.12.SPINE191011
  • Kiran R, Kumar A, Kumar R, et al. Poling direction driven large enhancement in piezoelectric performance. Scr Mater. 2018;151:76–81.
  • Xu J, Lin S, Ma Y, et al. Analysis on coupled vibration of a radially polarized piezoelectric cylindrical transducer. Sensors. 2017;17(12):2850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.