384
Views
2
CrossRef citations to date
0
Altmetric
Review

A review of medical wearables: materials, power sources, sensors, and manufacturing aspects of human wearable technologies

ORCID Icon & ORCID Icon
Pages 67-81 | Received 14 Nov 2021, Accepted 30 Jun 2022, Published online: 20 Jul 2022

References

  • Erboz G. How to define industry 40: the main pillars of industry 4.0. Managerial trends in the development of enterprises in globalization era. 2017. p. 761–767.
  • John Dian F, Vahidnia R, Rahmati A. Wearables and the internet of things (IoT), applications, opportunities, and challenges: a survey. IEEE Access. 2020;8:69200–69211.
  • Seneviratne S, Hu Y, Nguyen T, et al. A survey of wearable devices and challenges. IEEE Commun Surv Tutorials. 2017;19(4):2573–2620.
  • Jin H, Abu-Raya YS, Haick H. Advanced materials for health monitoring with Skin-Based wearable devices. Adv Healthcare Mater. 2017;6(11):1700024.
  • Liu X, Fu T, Ward J, et al. Multifunctional protein nanowire humidity sensors for green wearable electronics. Adv Electron Mater. 2020;6(9):2000721–2000727.
  • Rivadeneyra A, Marín-Sánchez A, Wicklein B, et al. Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Compos Sci Technol. 2021;208:108738.
  • Hosseini ES, Manjakkal L, Shakthivel D, et al. Glycine-Chitosan-Based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces. 2020;12(8):9008–9016.
  • Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020;103:24–51.
  • Gopalakrishnan S, Xu J, Zhong F, et al. Strategies for fabricating protein films for biomaterial applications. Adv Sustainable Syst. 2021;5(1):2000167.
  • Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Cleaner Prod. 2020;258:120978.
  • Xu K, Lu Y, Takei K. Multifunctional Skin-Inspired flexible sensor systems for wearable electronics. Adv Mater Technol. 2019;4(3):1800625–1800628.
  • Li J, Geng L, Wang G, et al. Self-Healable gels for use in wearable devices. Chem Mater. 2017;29(21):8932–8952.
  • Kweon OY, Samanta SK, Won Y, et al. Stretchable and Self-Healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior. ACS Appl Mater Interfaces. 2019;11(29):26134–26143.
  • Wei J, Xie J, Zhang P, et al. Bioinspired 3D printable, self-healable, and stretchable hydrogels with multiple conductivities for skin-like wearable strain sensors. ACS Appl Mater Interfaces. 2021;13(2):2952–2960.
  • Shahbazi MA, Shrestha N, Pierchala MK, et al. A self-healable, moldable and bioactive biomaterial gum for personalised and wearable drug delivery. J Mater Chem B. 2020;8(19):4340–4356.
  • Jia H, Gu SY. Remote and efficient infrared induced self-healable stretchable substrate for wearable electronics. Eur Polym J. 2020;126:109542.
  • Lim HR, Kim HS, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater. 2020;32(15):1901924–1901943.
  • Yun S, Park S, Park B, et al. A soft and transparent visuo-haptic interface pursuing wearable devices. IEEE Trans Ind Electron. 2020;67(1):717–724.
  • Kim KK, Ha IH, Won P, et al. Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat Commun. 2019;10(1):2582.
  • Zhang H, He R, Liu H, et al. A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors Actuat A Phys. 2021;322:112611.
  • Afroj S, Tan S, Abdelkader AM, et al. Highly conductive, scalable, and machine washable Graphene-Based E-Textiles for multifunctional wearable electronic applications. Adv Funct Mater. 2020;30(23):2000293.
  • Jin L, Sun T, Zhao W, et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application. J Power Sources. 2021;496:229838.
  • Corbishley P, Rodríguez-Villegas E. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. IEEE Trans Biomed Eng. 2008;55(1):196–204.
  • Farahmand S, Vahedian H, Abedinkhan Eslami M, et al. Wearable, battery-powered, wireless, programmable 8-channel neural stimulator. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society EMBS. 2012. p. 6120–6123.
  • Lee YH, Kim JS, Noh J, et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013;13(11):5753–5761.
  • Tan P, Chen B, Xu H, et al. Flexible Zn- and Li-air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci. 2017;10(10):2056–2080.
  • Chen WC, DeLong B, Vilkhu R, et al. Enabling batteryless wearables and implants. Appl Comput Electromagnetics Soc J. 2018;33:1106–1108.
  • Zhang W, Guan H, Zhong T, et al. Wearable Battery-Free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. Nano Micro Lett. 2020;12(1):11.
  • Nozariasbmarz A, Collins H, Dsouza K, et al. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl Energy. 2020;258:114069.
  • Tuncel Y, Bandyopadhyay S, Kulshrestha SV, et al. Towards wearable piezoelectric energy harvesting: Modeling and experimental validation. ACM International Conference Proceeding Series. 2020. 8–13.
  • Liu Y, Khanbareh H, Halim MA, et al. Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select. 2021;2(8):1421–1459.
  • Lee H, Roh JS. Charging device for wearable electromagnetic energy-harvesting textiles. Fash Text. 2021;8(1):5.
  • Digregorio G, Pierre H, Laurent P, et al. Modeling and experimental characterization of an electromagnetic energy harvester for wearable and biomedical applications. IEEE Access. 2020;8:175436–175447.
  • Iqbal M, Khan FU, Mehdi M, et al. Power harvesting footwear based on piezo-electromagnetic hybrid generator for sustainable wearable microelectronics. J King Saud Univ Engineer Sci. 2020;34:329–338.
  • Shi G, Chen J, Peng Y, et al. A piezo-electromagnetic coupling multi-directional vibration energy harvester based on frequency up-conversion technique. Micromachines. 2020;12(1):11.
  • Magno M, Boyle D. Wearable energy harvesting: from body to battery Proceedings - 2017 12th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS. 2017.
  • Leonov V, Torfs T, Fiorini P, et al. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors J. 2007;7(5):650–656.
  • Wang Z, Leonov V, Fiorini P, et al. Micromachined thermopiles for energy scavenging on human body. TRANSDUCERS and EUROSENSORS ’07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007. p. 911–914.
  • Navone C, Soulier M, Plissonnier M, et al. Development of (Bi,Sb) 2(Te,Se) 3-based thermoelectric modules by a screen-printing process. J Elec Materi. 2010;39(9):1755–1759.
  • Leonov V, Vullers RJM. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J Renew Sustain Energy. 2009;1(6):062701.
  • Siddique ARM, Mahmud S, Heyst BV. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew Sustain Energy Rev. 2017;73:730–744.
  • Qu W, Plötner M, Fischer WJ. Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems. J. Micromech. Microeng. 2001;11(2):146–152.
  • Schwyter E, Durrer L, Hierold C. Flexible micro thermoelectric generator based on electroplated Bi2 + xTe3 − x. Sensors and Actuators. 2008. p. 46–48.
  • Khan S, Dahiya RS, Lorenzelli L. Transfer printed Si microwires. IEEE. 2014. p. 86–89.
  • Takashiri M, Shirakawa T, Miyazaki K, et al. Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sens Actuators A Phys. 2007;138(2):329–334.
  • Lee HB, We JH, Yang HJ, et al. Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films. 2011;519(16):5441–5443.
  • Kim SJ, We JH, Cho BJ. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci. 2014;7(6):1959–1965.
  • We JH, Kim SJ, Cho BJ. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy. 2014;73:506–512.
  • Francioso L, De Pascali C, Farella I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J Power Sources. 2011;196(6):3239–3243.
  • Sevilla GAT, Inayat SB, Rojas JP, et al. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). Small. 2013;9(23):3916–3921.
  • Suemori K, Watanabe Y, Hoshino S. Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl Phys Lett. 2015;106(11):113902.
  • Cho C, Wallace KL, Tzeng P, et al. Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials. Adv Energy Mater. 2016;6(7):1502168.
  • Liu S, Peng N, Bai Y, et al. Self-formation of thickness tunable Bi2Te3 nanoplates on thin films with enhanced thermoelectric performance. RSC Adv. 2016;6(38):31668–31674.
  • Qing S, Rezania A, Rosendahl LA, et al. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor. Energy Convers Manage. 2018;156:655–665.
  • Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy. 2021;80:105567.
  • Xie XD, Wang Q. Energy harvesting from a vehicle suspension system. Energy. 2015;86:385–395.
  • Wang DW, Mo JL, Wang XF, et al. Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Convers Manage. 2018;171:1134–1149.
  • Words K, The I. Powered piezoelectric batteries to supply power to wearable electronic. Inter J Soc Mater Eng Resourc. 2002;10:34–40.
  • Wang JJ, Su HJ, Hsu CI, et al. Composite piezoelectric rubber band for energy harvesting from breathing and limb motion. J Phys Conf Ser. 2014;557:012022.
  • Halim MA, Park JY. Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion. Microsyst Technol. 2018;24(5):2099–2107.
  • Kim M, Wu YS, Kan EC, et al. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers. 2018;10(7):745.
  • Yildirim A, Grant JC, Song G, et al. Roll-to-Roll production of novel Large-Area piezoelectric films for transparent, flexible, and wearable fabric loudspeakers. Adv Mater Technol. 2020;5(7):2000211–2000296.
  • Su Y, Chen C, Pan H, et al. Muscle fibers inspired High-Performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater. 2021;31(19):2010962–2010968.
  • Fusca M, Negrini F, Perego P, et al. Validation of a wearable IMU system for gait analysis: Protocol and application to a new system. Appl Sci. 2018;8(7):1116–1167.
  • Lim S, D'Souza C. Measuring effects of two-handed side and anterior load carriage on thoracic-pelvic coordination using wearable gyroscopes. Sensors. 2020;20(18):5206–5228.
  • Henriksen A, Haugen Mikalsen M, Woldaregay AZ, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20(3):e110.
  • Gupta P, Moghimi MJ, Jeong Y, et al. Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. NPJ Digit Med. 2020;3(1):19.
  • Tarniţă D. Wearable sensors used for human gait analysis. Rom J Morphol Embryol. 2016;57(2):373–382.
  • Romtrairat P, Virulsri C, Tangpornprasert P. An application of scissored-pair control moment gyroscopes in a design of wearable balance assistance device for the elderly. J Biomech. 2019;87:183–188.
  • Oya H, Fujimoto Y. Preliminary experiments for postural control using wearable-CMG. Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. 2017. p. 7602–7607.
  • Jameel HF, Mohammed SL, Gharghan SK. Wheelchair control system based on gyroscope of wearable tool for the disabled. IOP Conf Ser Mater Sci Eng. 2020;745(1):012091.
  • Milici S, Lazaro A, Villarino R, et al. Wireless wearable Magnetometer-Based sensor for sleep quality monitoring. IEEE Sensors J. 2018;18(5):2145–2152.
  • Ayman A. Framework based on wearable IMU wrist sensors. 2019.
  • Jalal A, Quaid MAK, Ud Din Tahir SB, et al. A study of accelerometer and gyroscope measurements in physical life-log activities detection systems. Sensors. 2020;20(22):6623–6670.
  • Ahmed H, Tahir M. Improving the accuracy of human body orientation estimation with wearable IMU sensors. IEEE Trans Instrum Meas. 2017;66(3):535–542.
  • Casilari E, Álvarez-Marco M, García-Lagos F. A study of the use of gyroscope measurements in wearable fall detection systems. Symmetry. 2020;12(4):649.
  • Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11(1):9.
  • Hammad M, Maher A, Wang K, et al. Detection of abnormal heart conditions based on characteristics of ECG signals. Measure J Inter Measure Confeder. 2018;125:634–644.
  • Majumder S, Chen L, Marinov O, et al. Noncontact wearable wireless ECG systems for Long-Term monitoring. IEEE Rev Biomed Eng. 2018;11:306–321.
  • Ramasamy S, Balan A. Wearable sensors for ECG measurement: a review. SR. 2018;38(4):412–419.
  • Ariyanto M, Caesarendra W, Mustaqim KA, et al. Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT 2015. 2016. p. 12–17.
  • Sadikoglu F, Kavalcioglu C, Dagman B. Electromyogram (EMG) signal detection, classification of EMG signals and diagnosis of neuropathy muscle disease. Procedia Comput Sci. 2017;120:422–429.
  • Cifrek M, Medved V, Tonković S, et al. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech. 2009;24(4):327–340.
  • Okazaki S, Syoichizono M, Tamura H, et al. Development of diagnosis evaluation system of facial nerve paralysis using sEMG. Proc Inter Confer Artificial Life Robotics. 2017;22:528–531.
  • Zulkifli A, Ummu JK, Aishah AFQA, et al. Development of wearable electromyogram (EMG) device for upper extremity in aerobic exercise. IOP Conf Ser Mater Sci Eng. 2019;469:012085.
  • Jani AB, Bagree R, Roy AK. Design of a low-power, low-cost ECG & EMG sensor for wearable biometric and medical application. Proceedings of IEEE Sensors. 2017. 1–3.
  • Casson AJ, Abdulaal M, Dulabh M, et al. Electroencephalogram. 2018.
  • Elleithy K, Sobh T. New trends in networking, computing, e-learning, systems sciences, and engineering. Lecture Notes in Electrical Engineering. 2015. p. 312.
  • Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9(1):53–71.
  • Ebralidze II, Laschuk NO, Poisson J, et al. Colorimetric sensors and sensor arrays. Nanomaterials design for sensing applications. Amsterdam, Netherlands; Cambridge, MA: Elsevier Inc. 2019.
  • Rehg JM, Murphy SA, Kumar S. Mobile health: sensors, analytic methods, and applications. Mobile Health: Sensors, Analytic Methods, and Applications. 2017. p. 1–542.
  • Rachim VP, Chung WY. Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sensors Actuators B Chem. 2019;286:173–180.
  • Pan J, Zhang Z, Jiang C, et al. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale. 2020;12(33):17538–17544.
  • Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors—past and present. Electronics. 2014;3(2):282–302.
  • Qureshi F, Krishnan S. Wearable hardware design for the internet of medical things (IoMT). Sensors. 2018;18(11):3812.
  • Castaneda D, Esparza A, Ghamari M, et al. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron. 2018;4(4):195–202.
  • Bandodkar AJ, Jeerapan I, Wang J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 2016;1(5):464–482.
  • Sempionatto JR, Jeerapan I, Krishnan S, et al. Wearable chemical sensors: Emerging systems for on-Body analytical chemistry. Anal Chem. 2020;92(1):378–396.
  • Valdés-Ramírez G, Bandodkar AJ, Jia W, et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139(7):1632–1636.
  • Kim J, Imani S, de Araujo WR, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061–1068.
  • de Castro LF, de Freitas SV, Duarte LC, et al. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal Bioanal Chem. 2019;411(19):4919–4928.
  • Arakawa T, Kuroki Y, Nitta H, et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens Bioelectron. 2016;84:106–111.
  • Arakawa T, Tomoto K, Nitta H, et al. A wearable cellulose Acetate-Coated mouthguard biosensor for in vivo salivary glucose measurement. Anal Chem. 2020;92(18):12201–12207.
  • Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron. 2018;1(3):160–171.
  • Heikenfeld J. Bioanalytical devices: technological leap for sweat sensing. Nature. 2016;529(7587):475–476.
  • Salvo P, Di Francesco F, Costanzo D, et al. A wearable sensor for measuring sweat rate. IEEE Sensors J. 2010;10(10):1557–1558.
  • Anastasova S, Crewther B, Bembnowicz P, et al. A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron. 2017;93:139–145.
  • Kim J, De Araujo WR, Samek IA, et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem Commun. 2015;51:41–45.
  • Gao W, Nyein HYY, Shahpar Z, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 2016;1(7):866–874.
  • Tai LC, Gao W, Chao M, et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv Mater. 2018;30(23):1707442–1707448.
  • Yang Y, Song Y, Bo X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol. 2020;38(2):217–224.
  • Nyein HYY, Bariya M, Tran B, et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun. 2021;12(1):13.
  • Sharma A, Badea M, Tiwari S, et al. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26(3):732–748.
  • Kim J, Kim M, Lee MS, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun. 2017;8:14997–14998.
  • Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. 2018;4(1):12.
  • Ku M, Kim J, Won JE, et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci Adv. 2020;6(28):1–10.
  • Dou Z, Tang J, Liu Z, et al. Wearable contact lens sensor for non-invasive continuous monitoring of intraocular pressure. Micromachines. 2021;12(2):108–112.
  • Sreenilayam SP, Ahad IU, Nicolosi V, et al. Advanced materials of printed wearables for physiological parameter monitoring. Mater Today. 2020;32:147–177.
  • Lin J, Zhu Z, Cheung CF, et al. Digital manufacturing of functional materials for wearable electronics. J Mater Chem C. 2020;8(31):10587–10603.
  • Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: a review. Sensors. 2020;20(15):4225–4228.
  • Li P, Zhang Y, Zheng Z. Polymer-Assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv Mater. 2019;31(37):1902916–1902987.
  • Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. J Mater Chem C. 2017;5(12):2971–2993.
  • Khan S, Ali S, Bermak A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors. 2019;19(5):1230.
  • Liu Q, Tian B, Liang J, et al. Recent advances in printed flexible heaters for portable and wearable thermal management. Mater Horiz. 2021;8(6):1634–1656.
  • Yan K, Li J, Pan L, et al. Inkjet printing for flexible and wearable electronics. APL Mater. 2020;8(12):120705.
  • Beedasy V, Smith PJ. Printed electronics as prepared by inkjet printing. Materials. 2020;13(3):704–723.
  • Huang TT, Wu W. Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J Mater Chem A. 2019;7(41):23280–23300.
  • Liu L, Feng Y, Wu W. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J Power Sources. 2019;410-411:69–77.
  • Gu Z, Huang Z, Hu X, et al. In situ inkjet printing of the perovskite Single-Crystal Array-Embedded polydimethylsiloxane film for wearable Light-Emitting devices. ACS Appl Mater Interfaces. 2020;12(19):22157–22162.
  • Xuan T, Shi S, Wang L, et al. Inkjet-Printed quantum dot color conversion films for High-Resolution and Full-Color micro Light-Emitting diode displays. J Phys Chem Lett. 2020;11(13):5184–5191.
  • ling KH, Chuang CH, Chang LC, et al. Inkjet-printed silver films on textiles for wearable electronics applications. Surf Coat Technol. 2019;362:328–332.
  • Karim N, Afroj S, Malandraki A, et al. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C. 2017;5(44):11640–11648.
  • Karim N, Afroj S, Tan S, et al. All Inkjet-Printed Graphene-Silver composite ink on textiles for highly conductive wearable electronics applications. Sci Rep. 2019;9(1):10.
  • Lo L, Zhao J, Wan H, et al. An Inkjet-Printed PEDOT: PSS-based stretchable conductor for wearable health monitoring device applications. 2021.
  • Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Screen-printed electrodes: Promising paper and wearable transducers for (bio)sensing. Biosensors. 2020;10(7):76.
  • Tian B, Liu Q, Luo C, et al. Multifunctional ultrastretchable printed soft electronic devices for wearable applications. Adv Electron Mater. 2020;6(2):1900910–1900922.
  • Xu X, Luo M, He P, et al. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J Phys D Appl Phys. 2020;53(12):125402.
  • Hong H, Jiang L, Tu H, et al. Formulation of UV curable nano-silver conductive ink for direct screen-printing on common fabric substrates for wearable electronic applications. Smart Mater Struct. 2021;30(4):045001.
  • Ferri J, Llopis RL, Moreno J, et al. A wearable textile 3D gesture recognition sensor based on screen-printing technology. Sensors. 2019;19(23):5068.
  • Jansson E, Korhonen A, Hietala M, et al. Development of a full roll-to-roll manufacturing process of through-substrate vias with stretchable substrates enabling double-sided wearable electronics. Int J Adv Manuf Technol. 2020;111(11-12):3017–3027.
  • Zhang Z, Wang B, Qiu J, et al. Roll-to-roll printing of spatial wearable thermoelectrics. Manuf Lett. 2019;21:28–34.
  • Lee SH, Lee S. Fabrication and characterization of roll-to-Roll-Coated Cantilever-Structured touch sensors. ACS Applied Materials and Interfaces. 2020;12:46797–46803.
  • Huang Q, Zhu Y. Gravure printing of water-based silver nanowire ink on plastic substrate for flexible electronics. Sci Rep. 2018;8(1):1–10.
  • Bariya M, Shahpar Z, Park H, et al. Roll-to-Roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano. 2018;12(7):6978–6987.
  • Zhong ZW, Ee JH, Chen SH, et al. Parametric investigation of flexographic printing processes for R2R printed electronics. Mater Manuf Processes. 2020;35(5):564–571.
  • Assaifan AK, Al habis N, Ahmad I, et al. Scaling-up medical technologies using flexographic printing. Talanta. 2020;219:121236.
  • Torrisi F, Carey T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today. 2018;23:73–96.
  • Chen Y, Li X, Bi Z, et al. Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors. Chem Engin J. 2018;353:499–506.
  • Esfahani MZ, Khosravi M. Stamp-assisted flexible graphene-based micro-supercapacitors. J Power Sources. 2020;462:228166.
  • Wang H, Song Y, Miao L, et al. Stamp-assisted gravure printing of micro-supercapacitors with general flexible substrates. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Academy for Advanced Interdisciplinary Studies, Peking University, Bei. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). 2019. 950–953.
  • Shin J, Jeong B, Kim J, et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater. 2020;32(2):1905527–1905529.
  • An J, Le TSD, Lim CHJ, et al. Single-Step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci. 2018;5(8):1800496.
  • Lu C, Gao Y, Yu G, et al. Laser-microengineered flexible electrodes with enhanced sensitivity for wearable pressure sensors. Sensors Actuators A Phys. 2018;281:124–129.
  • Bilger D, Homayounfar SZ, Andrew TL. A critical review of reactive vapor deposition for conjugated polymer synthesis. J Mater Chem C. 2019;7(24):7159–7174.
  • Andrew TL, Zhang L, Cheng N, et al. Melding Vapor-Phase organic chemistry and textile manufacturing to produce wearable electronics. Acc Chem Res. 2018;51(4):850–859.
  • Sadanandan KS, Bacon A, Shin DW, et al. Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles. J Phys Mater. 2021;4:014004.
  • Sadi MS, Pan J, Xu A, et al. Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose. 2019;26(12):7569–7579.
  • Dias AA, Chagas CLS, Silva-Neto HDA, et al. Environmentally friendly manufacturing of flexible graphite electrodes for a wearable device monitoring zinc in sweat. ACS Appl Mater Interfaces. 2019;11(43):39484–39492.
  • Sencadas V, Tawk C, Alici G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications. ACS Appl Mater Interfaces. 2020;12(7):8761–8772.
  • Mück JE, Ünal B, Butt H, et al. Market and patent analyses of wearables in medicine. Trends Biotechnol. 2019;37(6):563–566.
  • Jiang N, Mück JE, Yetisen AK. The regulation of wearable medical devices. Trends Biotechnol. 2020;38(2):129–133.
  • Maak TG, Wylie JD. Medical device regulation: a comparison of the United States and the european union. J Am Acad Orthop Surg. 2016;24(8):537–543.
  • Norman GV. Drugs, devices, and the FDA: Part 2. JACC: Basic to Translational Science. 2016;1:277–287.
  • French-Mowat E, Burnett J. How are medical devices regulated in the european union? J R Soc Med. 2012;105(1_suppl):22–28.
  • Berglund ME, Duvall J, Dunne LE. A survey of the historical scope and current trends of wearable technology applications. International Symposium on Wearable Computers, Digest of Papers. 2016. 40–43.
  • Sridhar AP, P.V L, Mohana TK. Wearable devices in healthcare 4.0: effects, trends and challenges. ICICNIS 2020, SSRN Journal. 2021. 229–237.
  • Motti VG. Wearable interaction. Berlin Heidelberg: Springer; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.