59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the performances of various controllers adopted in the biomedical field for blood glucose regulation: a case study of the type-1 diabetes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 376-388 | Received 09 Jun 2023, Accepted 01 May 2024, Published online: 17 May 2024

References

  • Uhlemeyer C, Müller N, Rieck M, et al. Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus. Mol Metab. 2023;67:101650. doi: 10.1016/j.molmet.2022.101650.
  • Farman M, Saleem MU, Ahmad A, et al. A control of glucose level in insulin therapies for the development of ­artificial pancreas by Atangana Baleanu derivative. Alex Eng J. 2020;59(4):2639–2648. doi: 10.1016/j.aej.2020.04.027.
  • Farman M, Ahmad A, Zehra A, et al. Analysis and controllability of diabetes model for experimental data by using fractional operator. Math Comput Simul. 2024;218:133–148. doi: 10.1016/j.matcom.2023.11.017.
  • Farman M, Batool M, Nisar KS, et al. Controllability and analysis of sustainable approach for cancer treatment with chemotherapy by using the fractional operator. Results Phys. 2023;51:106630. doi: 10.1016/j.rinp.2023.106630.
  • Tanbek K, Yılmaz U, Gul M, et al. Effects of central FGF21 infusion on the glucose homeostasis in rats (brain–pancreas axis). Arch Physiol Biochem. 2023:1–8. doi: 10.1080/13813455.2023.2166964.
  • Zhang Y-B, Pan X-F, Lu Q, et al. Association of combined healthy lifestyles with cardiovascular disease and mortality of patients with diabetes: an international multicohort study. Mayo Clin Proc. 2023;98(1):60–74. doi: 10.1016/j.mayocp.2022.08.012.
  • Patra AK, Panigrahi GS, Nanda A. An automatic artificial pancreas based on AOA-VPTIDF control algorithm. Int J Adv Mech Syst. 2023;10(1):21–32. doi: 10.1504/IJAMECHS.2023.128159.
  • Ndakara AI, Essabbar M, Saikouk H. Blood glucose-insulin dynamics in type-1 diabetic patients for the mitigation of hyperglycemic conditions: a PID controller with a step response. In: Digital Technologies and Applications: Proceedings of ICDTA'23, Fez, Morocco, Volume 1. Springer; 2023. p. 949–956.
  • Omar AS, Faiz KA, Saeed KMI, et al. Epidemiologic and clinical characteristics of diabetic foot ulcer among patients with diabetes in Afghanistan: an IDF supported initiative. Diabetes Res Clin Pract. 2023;196:110227. doi: 10.1016/j.diabres.2022.110227.
  • Huang Y-K, Chang Y-C. Oral health: the first step to ­sustainable development goal 3. J Formos Med Assoc. 2022;121(7):1348–1350. doi: 10.1016/j.jfma.2021.10.018.
  • Dalenberg JR, Patel BP, Denis R, et al. Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metab. 2020;31(3):493–502.e7. doi: 10.1016/j.cmet.2020.01.014.
  • Liu T, Gu Y, Waleed ALA, et al. Challenges and opportunities in developing low glycemic index foods with white kidney bean α-amylase inhibitor. Trends Food Sci Technol. 2024;147:104397. doi: 10.1016/j.tifs.2024.104397.
  • Maity D, Ray PG, Buchmann P, et al. Blood-glucose-powered metabolic fuel cell for self-sufficient bioelectronics. Adv Mater. 2023;35(21):2300890. doi: 10.1002/adma.202300890.
  • Batmani Y, Khodakaramzadeh S, Moradi P. Automatic artificial pancreas systems using an intelligent multiple-model PID strategy. IEEE J Biomed Health Inform. 2022;26(4):1708–1717. doi: 10.1109/JBHI.2021.3116376.
  • Soon GS, Torbenson M. The liver and glycogen: in sickness and in health. Int J Mol Sci. 2023;24(7):6133. doi: 10.3390/ijms24076133.
  • Kawamori D, Sasaki S. Newly discovered knowledge pertaining to glucagon and its clinical applications. J Diabetes Investig. 2023;14(7):829–837. doi: 10.1111/jdi.14009.
  • Gabbay MAL, Rodacki M, Calliari LE, et al. Time in range: a new parameter to evaluate blood glucose control in patients with diabetes. Diabetol Metab Syndr. 2020;12(1):22. doi: 10.1186/s13098-020-00529-z.
  • Ducluzeau PH, Fauchier G, Herbert J, et al. Prevalence and incidence of cardiovascular and renal diseases in type 1 compared with type 2 diabetes: a nationwide French observational study of hospitalized patients. Diabetes Metab. 2023;49(3):101429. doi: 10.1016/j.diabet.2023.101429.
  • Sangtani A, Owens L, Broome DT, et al. The impact of new and renewed restrictive state abortion laws on pregnancy-capable people with diabetes. Curr Diab Rep. 2023;23(8):175–184. doi: 10.1007/s11892-023-01512-4.
  • Batmani Y. Blood glucose concentration control for type 1 diabetic patients: a non-linear suboptimal approach. IET Syst Biol. 2017;11(4):119–125. doi: 10.1049/iet-syb.2016.0044.
  • Domingo-Lopez DA, Lattanzi G, H J Schreiber L, et al. Medical devices, smart drug delivery, wearables and technology for the treatment of diabetes mellitus. Adv Drug Deliv Rev. 2022;185:114280. doi: 10.1016/j.addr.2022.114280.
  • Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus—current status and future prospects. Nat Rev Endocrinol. 2018;14(8):464–475. doi: 10.1038/s41574-018-0044-y.
  • Mirzaee A, Dehghani M, Mohammadi M. Robust LPV control design for blood glucose regulation considering daily life factors. Biomed Signal Process Control. 2020;57:101830. doi: 10.1016/j.bspc.2019.101830.
  • Mughal IS, Patanè L, Caponetto R. A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas. Annu Rev Control. 2024;57:100937. doi: 10.1016/j.arcontrol.2024.100937.
  • Patra AK, Mishra AK, Rout PK. Backstepping model predictive controller for blood glucose regulation in type-I diabetes patient. IETE J Res. 2020;66(3):326–340. doi: 10.1080/03772063.2018.1493404.
  • Ming W, Guo X, Zhang G, et al. Recent advances in the precision control strategy of artificial pancreas. Med Biol Eng Comput. 2024;62(6):1615–1638.
  • Nath A, Biradar S, Balan A, et al. Physiological models and control for type 1 diabetes mellitus: a brief review. IFAC-PapersOnLine. 2018;51(1):289–294. doi: 10.1016/j.ifacol.2018.05.077.
  • Khodakaramzadeh S, Batmani Y, Meskin N. Automatic blood glucose control for type 1 diabetes: a trade-off between postprandial hyperglycemia and hypoglycemia. Biomed Signal Process Control. 2019;54:101603. doi: 10.1016/j.bspc.2019.101603.
  • Batmani Y, Khodakaramzadeh S. Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy. IET Syst Biol. 2020;14(1):24–30. doi: 10.1049/iet-syb.2018.5049.
  • Bergman RN, Prager R, Volund A, et al. Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest. 1987;79(3):790–800. doi: 10.1172/JCI112886.
  • Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng. 2007;54(10):1740–1749. doi: 10.1109/TBME.2007.893506.
  • Hu M, Suthers PF, Maranas CD. KETCHUP: parameterizing of large-scale kinetic models using multiple datasets with different reference states. Metab Eng. 2024;82:123–133. doi: 10.1016/j.ymben.2024.02.002.
  • Syafiie S, Alharbi F, Alshehri AA, et al. A new approach to stabilize diabetes systems with time-varying delays and disturbance rejection. J Franklin Inst. 2024;361(1):543–556. doi: 10.1016/j.jfranklin.2023.12.012.
  • Jacknoon A, Hassan M, Ferik SE. Design of RST controllers based on intelligent optimization algorithms. In: 2016 Conference of Basic Sciences and Engineering Studies (SGCAC). IEEE; 2016. p. 177–182. doi: 10.1109/SGCAC.2016.7458025.
  • İçmez Y, Can MS. Smith predictor controller design using the direct synthesis method for unstable second-Order and time-delay systems. Processes. 2023;11(3):941. doi: 10.3390/pr11030941.
  • Williams RL, Lawrence DA. Linear state-space control systems. Nashville (TN): John Wiley & Sons; 2007.
  • Plant-level control and protection modeling task force. [Online]. Available from: https://www.nerc.com/comm/PC/PCPMTF_DL/Final_PCPMTF-Report.pdf
  • Maahs DM, Buckingham BA, Castle JR, et al. Outcome measures for artificial pancreas clinical trials: a consensus report. Diabetes Care. 2016;39(7):1175–1179. doi: 10.2337/dc15-2716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.