2,766
Views
23
CrossRef citations to date
0
Altmetric
Articles

A coupled tide-wave model for the NW European shelf seas

, &
Pages 234-253 | Received 30 Jan 2014, Accepted 10 Apr 2014, Published online: 14 Aug 2014

References

  • ABPmer, The Met Office and Proudman Oceanographic Laboratory; Atlas of UK marine renewable energy resources. Technical report, Department for Business Enterprise & Regulatory Reform, 2008.
  • Barbariol, F., Benetazzo, A., Carniel, S. and Sclavo, M., Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew. Energ. 2013, 60, 462–471.
  • Benetazzo, A., Carniel, S., Sclavo, M. and Bergamasco, A., Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Model. 2013, 70, 152–165.
  • Bolanos, R., Osuna, P., Wolf, J., Monbaliu, J. and Sanchez-Arcilla, A., Development of the POLCOMS-WAM current-wave model. Ocean Model. 2011, 36, 102–115.
  • Bolanos-Sanchez, R., Wolf, J., Brown, J., Osuna, P., Monbaliu, J. and Sanchez-Arcilla, A., Comparison of wave-current interaction formulation using POLCOMS-WAM wave-current model, in Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, 2009.
  • Brown, J.M., Souza, A.J. and Wolf, J., An 11-year validation of wave-surge modelling in the Irish Sea, using a nested POLCOMS-WAM modelling system. Ocean Model. 2010, 33, 118–128.
  • Carrère, L., Lyard, F., Cancet, M., Guillot, A. and Roblou, L., FES2012: a new global tidal model taking advantage of nearly 20 years of altimetry, in Proceedings of meeting, 20 years of altimetry, Venice-Lido, Italy, 2012.
  • Davies, A., Soulsby, R. and King, H., A numerical model of the combined wave and current bottom boundary layer. J. Geophys. Res.-Oceans 1988, 93, 491–508.
  • Di Lorenzo, E., Moore, A.M., Arango, H.G., Cornuelle, B.D., Miller, A.J., Powell, B., Chua, B.S. and Bennett, A.F., Weak and strong constraint data assimilation in the inverse regional ocean modeling system (ROMS): development and application for a baroclinic coastal upwelling system. Ocean Model. 2007, 16, 160–187.
  • Egbert, G.D. and Ray, R.D., Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett. 2003, 30, 1907, 9-1–9-4. doi:10.1029/2003GL017676.
  • Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C. and Wilkin, J., Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 2008, 227, 3595–3624.
  • Hashemi, M.R. and Neill, S.P., The role of tides in shelf-scale simulations of the wave energy resource. Renew. Energ. 2014, 69, 300–310.
  • Jones, B., A numerical study of wave refraction in shallow tidal waters. Estuar. Coast. Shelf Sci. 2000, 51, 331–347.
  • Kumar, N., Voulgaris, G., Warner, J.C. and Olabarrieta, M., Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 2012, 47, 65–95.
  • MacCready, P., Banas, N.S., Hickey, B.M., Dever, E.P. and Liu, Y., A model study of tide-and wind-induced mixing in the Columbia River estuary and plume. Cont. Shelf Res. 2009, 29, 278–291.
  • Madsen, O.S., Spectral wave-current bottom boundary layer flows. Coastal Eng. Proc. 1994, 1, 384–398.
  • Malarkey, J. and Davies, A.G., A non-iterative procedure for the Wiberg and Harris (1994) oscillatory sand ripple predictor. J. Coast. Res. 2003, 19, 738–739.
  • Mellor, G.L., The depth-dependent current and wave interaction equations: a revision. J. Phy. Oceanogr. 2008, 38, 2587–2596.
  • Neill, S.P. and Hashemi, M.R., Wave power variability over the northwest European shelf seas. App. Energ. 2013, 106, 31–46.
  • Neill, S.P., Hashemi, M.R. and Lewis, M.J., The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renew. Energ. 2014, 68, 337–350.
  • Neill, S.P., Jordan, J.R. and Couch, S.J., Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renew. Energ. 2012, 37, 387–397.
  • Neill, S.P., Scourse, J.D. and Uehara, K., Evolution of bed shear stress distribution over the northwest European shelf seas during the last 12,000 years. Ocean Dynam. 2010, 60, 1139–1156.
  • Newberger, P. and Allen, J.S., Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. J. Geophys. Res.- Oceans 2007a, 112, C08018 1–12.
  • Newberger, P. and Allen, J.S., Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. J. Geophys. Res.- Oceans 2007b, 112, C08019 1–21.
  • Pingree, R. and Griffiths, D., Sand transport paths around the British Isles resulting from M2 and M4 tidal interactions. J. Mar. Biol. Assoc. UK 1979, 59, 497–513.
  • Reniers, A., Thornton, E., Stanton, T. and Roelvink, J., Vertical flow structure during Sandy Duck: observations and modeling. Coast. Eng. 2004, 51, 237–260.
  • Saruwatari, A., Ingram, D.M. and Cradden, L., Wave-current interaction effects on marine energy converters. Ocean Eng. 2013, 73, 106–118.
  • Soulsby, R. and Clarke, S., Bed shear-stresses under combined waves and currents on smooth and rough beds. HR Wallingford, Report TR137, 2005.
  • Styles, R. and Glenn, S.M., Modeling bottom roughness in the presence of wave-generated ripples. J. Geophys. Res.-Oceans 2002, 107, 3110, 24-1-–24-15.
  • Tolman, H., An evaluation of expressions for wave energy dissipation due to bottom friction in the presence of currents. Coast. Eng. 1992, 16, 165–179.
  • Uchiyama, Y., McWilliams, J.C. and Shchepetkin, A.F., Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Model. 2010, 34, 16–35.
  • Warner, J.C., Armstrong, B., He, R. and Zambon, J.B., Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2010, 35, 230–244.
  • Warner, J.C., Sherwood, C.R., Arango, H.G. and Signell, R.P., Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model. 2005, 8, 81–113.
  • Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C.K. and Arango, H.G., Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306.
  • Wolf, J., Coastal flooding: impacts of coupled wave-surge-tide models. Nat. Hazards 2009, 49, 241–260.