312
Views
8
CrossRef citations to date
0
Altmetric
Articles

Treatment of solid objects in the Pencil Code using an immersed boundary method and overset grids

ORCID Icon, , , , &
Pages 35-57 | Received 03 Apr 2018, Accepted 20 Jun 2018, Published online: 18 Sep 2018

References

  • Aarnes, J.R., Andersson, H.I. and Haugen, N.E.L., High-order overset grid method for detecting particle impaction on a cylinder in a cross flow (Manuscript submitted for publication), 2018a.
  • Aarnes, J.R., Andersson, H.I. and Haugen, N.E.L., Numerical investigation of free-stream turbulence effects on the transition-in-wake state of flow past a circular cylinder. J. Turbul. 2018b, 19, 252–273. doi: 10.1080/14685248.2017.1418085
  • Benek, J.A., Buningt, P.G. and Steger, J.L., A 3-D chimera grid embedding technique, in AIAA 7th Computational Fluid Dynamics Conference, 1985.
  • Berthelsen, P.A. and Faltinsen, O.M., A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries. J. Comput. Phys. 2008, 227, 4354–4397. doi: 10.1016/j.jcp.2007.12.022
  • Causon, D.M., Ingram, D.M., Mingham, C.G., Yang, G. and Pearson, R.V., Calculation of shallow water flows using a Cartesian cut cell approach. Adv. Water Resour. 2000, 23, 545–562. doi: 10.1016/S0309-1708(99)00036-6
  • Chaudhuri, A., Hadjadj, A. and Chinnayya, A., On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 2011, 230, 1731–1748. doi: 10.1016/j.jcp.2010.11.016
  • Chesshire, G. and Henshaw, W.D., Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 1990, 90, 1–64. doi: 10.1016/0021-9991(90)90196-8
  • Chicheportiche, J. and Gloerfelt, X., Study of interpolation methods for high-accuracy computations on overlapping grids. Comput. Fluids 2012, 68, 112–133. doi: 10.1016/j.compfluid.2012.07.019
  • Dobler, W., Stix, M. and Brandenburg, A., Magnetic field generation in fully convective rotating spheres. Astrophys. J. 2006, 638, 336–347. doi: 10.1086/498634
  • Dong, H., Bozkurttas, M., Mittal, R., Madden, P. and Lauder, G., Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 2010, 645, 345–373. doi: 10.1017/S0022112009992941
  • Gaitonde, D.V. and Visbal, M.R., Padé-type higher-order boundary filters for the Navier–Stokes equations. AIAA J. 2000, 38, 2103–2112. doi: 10.2514/2.872
  • Gilmanov, A., Sotiropoulos, F. and Balaras, E., A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J. Comput. Phys. 2003, 191, 660–669. doi: 10.1016/S0021-9991(03)00321-8
  • Haugen, N.E.L. and Brandenburg, A., Hydrodynamic and hydromagnetic energy spectra from large eddy simulations. Phys. Fluids 2006, 18, 075106. doi: 10.1063/1.2222399
  • Haugen, N.E.L. and Kragset, S., Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. J. Fluid Mech. 2010, 661, 239–261. doi: 10.1017/S0022112010002946
  • Ingram, D.M., Causon, D.M. and Mingham, C.G., Developments in Cartesian cut cell methods. Math. Comput. Simul. 2003, 61, 561–572. doi: 10.1016/S0378-4754(02)00107-6
  • Kageyama, A. and Sato, T., ‘Yin-Yang grid’: an overset grid in spherical geometry. Geochem. Geophys. Geosyst. 2004, 5. doi: 10.1029/2004GC000734
  • Kim, J., Kim, D. and Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 2001, 171, 132–150. doi: 10.1006/jcph.2001.6778
  • Li, Y., Zhang, R., Shock, R. and Chen, H., Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach. Eur. Phys. J. Spec. Top. 2009, 171, 91–97. doi: 10.1140/epjst/e2009-01015-9
  • Liu, C. and Hu, C., An efficient immersed boundary treatment for complex moving object. J. Comput. Phys. 2014, 274, 654–680. doi: 10.1016/j.jcp.2014.06.042
  • Luo, K., Zhuang, Z., Fan, J. and Haugen, N.E.L., A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions. Int. J. Heat Mass Transfer 2016, 92, 708–717. doi: 10.1016/j.ijheatmasstransfer.2015.09.024
  • Luo, K., Mao, C., Zhuang, Z., Fan, J. and Haugen, N.E.L., A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions part-II: complex geometries. Int. J. Heat Mass Transfer 2017, 104, 98–111. doi: 10.1016/j.ijheatmasstransfer.2016.08.010
  • Mattsson, K. and Nordström, J., Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 2004, 199, 503–540. doi: 10.1016/j.jcp.2004.03.001
  • Mavriplis, D., Unstructured grid techniques. Annu. Rev. Fluid Mech. 1997, 29, 473–514. doi: 10.1146/annurev.fluid.29.1.473
  • Meakin, R., The chimera method of simulations for unsteady three-dimensional viscous flow. In Computational Fluid Dynamics Review, edited by M. Hafez and K. Oshima, pp. 70–86, 1995 (Wiley: New York, NY).
  • Mittal, S., Excitation of shear layer instability in flow past a cylinder at low Reynolds number. Int. J. Numer. Methods Fluids 2005, 49, 1147–1167. doi: 10.1002/fld.1043
  • Mittal, R. and Iaccarino, G., Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. doi: 10.1146/annurev.fluid.37.061903.175743
  • Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. and von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 2008, 227, 4825–4852. doi: 10.1016/j.jcp.2008.01.028
  • Nagendra, K., Tafti, D.K. and Viswanath, K., A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid based solvers. J. Comput. Phys. 2014, 267, 225–246. doi: 10.1016/j.jcp.2014.02.045
  • Noack, R.W., SUGGAR: a general capability for moving body overset grid assembly, in 17th AIAA Computational Fluid Dynamics Conference, 2005.
  • Owen, S.J., A survey of unstructured mesh generation technology, in Proceedings of 7th International Meshing Roundtable, 1998, pp. 239–267.
  • Pan, D., An immersed boundary method on unstructured Cartesian meshes for incompressible flows with heat transfer. Numer. Heat. Tr. B.-Fund. 2006, 49, 277–297. doi: 10.1080/10407790500290709
  • Park, J., Kwon, K. and Choi, H., Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J. 1998, 12, 1200–1205. doi: 10.1007/BF02942594
  • Pärt-Enander, E. and Sjögreen, B., Conservative and non-conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems. Comput. Fluids 1994, 23, 551–574. doi: 10.1016/0045-7930(94)90019-1
  • Peskin, C.S., Flow patterns around heart valves: a numerical method. J. Comput. Phys. 1972, 10, 252–271. doi: 10.1016/0021-9991(72)90065-4
  • Peskin, C.S., The immersed boundary method. Acta Numer. 2002, 11, 479–517. doi: 10.1017/S0962492902000077
  • Poinsot, T.J. and Lele, S., Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. doi: 10.1016/0021-9991(92)90046-2
  • Posdziech, O. and Grundmann, R., A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct. 2007, 23, 479–499. doi: 10.1016/j.jfluidstructs.2006.09.004
  • Qu, L., Norberg, C., Davidson, L., Peng, S.H. and Wang, F., Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluids Struct. 2013, 39, 347–370. doi: 10.1016/j.jfluidstructs.2013.02.007
  • Quirk, J.J., An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 1994, 23, 125–142. doi: 10.1016/0045-7930(94)90031-0
  • Rogers, S.E., Suhs, N.E. and Dietz, W.E., PEGASUS 5: an automated preprocessor for overset-grid computational fluid dynamics. AIAA J. 2003, 41, 1037–1045. doi: 10.2514/2.2070
  • Schneiders, L., Hartmann, D., Meinke, M. and Schröder, W., An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 2013, 235, 786–809. doi: 10.1016/j.jcp.2012.09.038
  • Seo, J.H. and Mittal, R., A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 2011, 230, 1000–1019. doi: 10.1016/j.jcp.2010.10.017
  • Sherer, S.E. and Scott, J.N., High-order compact finite-difference methods on general overset grids. J. Comput. Phys. 2005, 210, 459–496. doi: 10.1016/j.jcp.2005.04.017
  • Shi, J.M., Gerlach, D., Breuer, M., Biswas, G. and Durst, F., Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys. Fluids 2004, 16, 4331–4345. doi: 10.1063/1.1804547
  • Stålberg, E., Brüger, A., Lötstedt, P., Johansson, A.V. and Henningson, D.S., High order accurate solution of flow past a circular cylinder. J. Sci. Comput. 2006, 27, 431–441. doi: 10.1007/s10915-005-9043-y
  • Steger, J.L. and Benek, J.A., On the use of composite grid schemes in computational aerodynamics. Comput. Methods. Appl. Mech. Eng. 1987, 64, 301–320. doi: 10.1016/0045-7825(87)90045-4
  • Steger, J.L., Dougherty, F.C. and Benek, J.A., A chimera grid scheme, in Advances in Grid Generation, edited by K.N. Ghia and U. Ghia, pp. 59–69, 1983 (American Society of Mechanical Engineers: New York, NY).
  • Strand, B., Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 1994, 110, 47–67. doi: 10.1006/jcph.1994.1005
  • Tannehill, J.C., Anderson, D. and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, 2 edn, 1997 (Taylor & Francis: Philadelphia, PA).
  • The Pencil Code, (pencil-code.nordita.org [Internet]), 2018. Stockholm (SE): NORDITA; [updated February 2018]. Available online at: https://github.com/pencil-code.
  • Tseng, Y.H. and Ferziger, J.H., A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 2003, 192, 593–623. doi: 10.1016/j.jcp.2003.07.024
  • Uddin, H., Kramer, R. and Pantano, C., A Cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries. J. Comput. Phys. 2014, 262, 379–407. doi: 10.1016/j.jcp.2014.01.004
  • Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2 edn, 2007 (Pearson Education: Harlow).
  • Visbal, M.R. and Gaitonde, D.V., High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 1999, 37, 1231–1239. doi: 10.2514/2.591
  • Visbal, M.R. and Gaitonde, D.V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 2002, 181, 155–185. doi: 10.1006/jcph.2002.7117
  • Völkner, S., Brunswig, J. and Rung, T., Analysis of non-conservative interpolation techniques in overset grid finite-volume methods. Comput. Fluids 2017, 148, 39–55. doi: 10.1016/j.compfluid.2017.02.010
  • White, F.M., Viscous Fluid Flow, 3 edn, 2006 (McGraw-Hill Education: New York, NY).
  • Williamson, J., Low-storage runge-kutta schemes. J. Comput. Phys. 1980, 35, 48–56. doi: 10.1016/0021-9991(80)90033-9
  • Xia, J., Luo, K. and Fan, J., A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. Int. J. Heat Mass Transfer 2014, 75, 302–312. doi: 10.1016/j.ijheatmasstransfer.2014.03.048
  • Zang, Y. and Street, R.L., A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int. J. Numer. Methods Fluids 1995, 20, 341–361. doi: 10.1002/fld.1650200502
  • Zheng, X., Bielamowicz, S., Luo, H. and Mittal, R., A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Ann. Biomed. Eng. 2009, 37, 625–642. doi: 10.1007/s10439-008-9630-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.