198
Views
17
CrossRef citations to date
0
Altmetric
Articles

Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection

, , , &
Pages 8-34 | Received 24 Jul 2018, Accepted 02 Jan 2019, Published online: 15 Feb 2019

References

  • Augustson, K.C., Brown, B.P., Brun, A.S., Miesch, M.S. and Toomre, J., Convection and differential rotation in F-type stars. Astrophys. J. 2012, 756, 169. doi: 10.1088/0004-637X/756/2/169
  • Augustson, K., Brun, A.S., Miesch, M. and Toomre, J., Grand minima and equatorward propagation in a cycling stellar convective dynamo. Astrophys. J. 2015, 809, 149. doi: 10.1088/0004-637X/809/2/149
  • Barekat, A. and Brandenburg, A., Near-polytropic stellar simulations with a radiative surface. Astron. Astrophys. 2014, 571, A68. doi: 10.1051/0004-6361/201322461
  • Beaudoin, P., Strugarek, A. and Charbonneau, P., Differential rotation in solar-like convective envelopes: Influence of overshoot and magnetism. Astrophys. J. 2018, 859, 61. doi: 10.3847/1538-4357/aabfef
  • Brandenburg, A., Computational aspects of astrophysical MHD and turbulence. In Advances in Nonlinear Dynamics, edited by A. Ferriz-Mas, M. Núñez, p. 269, 2003 (Taylor and Francis: London).
  • Brandenburg, A., Stellar mixing length theory with entropy rain. Astrophys. J. 2016, 832, 6. doi: 10.3847/0004-637X/832/1/6
  • Brandenburg, A., Chan, K.L., Nordlund, Å. and Stein, R.F., Effect of the radiative background flux in convection. Astron. Nachr. 2005, 326, 681–692. doi: 10.1002/asna.200510411
  • Brandenburg, A. and Dobler, W., Hydromagnetic turbulence in computer simulations. Comp. Phys. Comm. 2002, 147, 471–475. doi: 10.1016/S0010-4655(02)00334-X
  • Brandenburg, A., Moss, D. and Tuominen, I., Stratification and thermodynamics in mean-field dynamos. Astron. Astrophys. 1992, 265, 328–344.
  • Brandenburg, A., Nordlund, A. and Stein, R.F., Astrophysical convection and dynamos. In Geophysical and Astrophysical Convection, Contributions From a Workshop Sponsored by the Geophysical Turbulence Program at the National Center for Atmospheric Research, October, 1995. edited by P.A. Fox, R.M. Kerr, pp. 85–105, Aug 2000 (Published by Gordon and Breach Science Publishers: The Netherlands).
  • Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S. and Toomre, J., Rapidly rotating suns and active nests of convection. Astrophys. J. 2008, 689, 1354–1372. doi: 10.1086/592397
  • Brun, A.S., Miesch, M.S. and Toomre, J., Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 2004, 614, 1073–1098. doi: 10.1086/423835
  • Brun, A.S., Miesch, M.S. and Toomre, J., Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 2011, 742, 79. doi: 10.1088/0004-637X/742/2/79
  • Deardorff, J.W., The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmosph. Sci. 1966, 23, 503–506. doi: 10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2
  • Fan, Y. and Fang, F., A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 2014, 789, 35. doi: 10.1088/0004-637X/789/1/35
  • Featherstone, N.A. and Hindman, B.W., The spectral amplitude of stellar convection and its scaling in the high-Rayleigh-number regime. Astrophys. J. 2016, 818, 32. doi: 10.3847/0004-637X/818/1/32
  • Gastine, T., Duarte, L. and Wicht, J., Dipolar versus multipolar dynamos: the influence of the background density stratification. Astron. Astrophys. 2012, 546, A19. doi: 10.1051/0004-6361/201219799
  • Gastine, T. and Wicht, J., Effects of compressibility on driving zonal flow in gas giants. Icarus 2012, 219, 428–442. doi: 10.1016/j.icarus.2012.03.018
  • Gastine, T., Yadav, R.K., Morin, J., Reiners, A. and Wicht, J., From solar-like to antisolar differential rotation in cool stars. Monthly Notices Roy. Astron. Soc. 2014, 438, L76–L80. doi: 10.1093/mnrasl/slt162
  • Gent, F.A., Käpylä, M.J. and Warnecke, J., Long-term variations of turbulent transport coefficients in a solarlike convective dynamo simulation. Astron. Nachr. 2017, 338, 885–895. doi: 10.1002/asna.201713406
  • Guerrero, G., Smolarkiewicz, P.K., de Gouveia Dal Pino, E.M., Kosovichev, A.G. and Mansour, N.N., On the role of tachoclines in solar and stellar dynamos. Astrophys. J. 2016, 819, 104. doi: 10.3847/0004-637X/819/2/104
  • Hotta, H., Solar overshoot region and small-scale dynamo with realistic energy flux. Astrophys. J. 2017, 843, 52. doi: 10.3847/1538-4357/aa784b
  • Hotta, H., Rempel, M. and Yokoyama, T., High-resolution calculations of the solar global convection with the reduced speed of sound technique. I. The structure of the convection and the magnetic field without the rotation. Astrophys. J. 2014, 786, 24. doi: 10.1088/0004-637X/786/1/24
  • Hotta, H., Rempel, M. and Yokoyama, T., High-resolution calculation of the solar global convection with the reduced speed of sound technique. II. Near surface shear layer with the rotation. Astrophys. J. 2015, 798, 51. doi: 10.1088/0004-637X/798/1/51
  • Hotta, H., Rempel, M., Yokoyama, T., Iida, Y. and Fan, Y., Numerical calculation of convection with reduced speed of sound technique. Astron. Astrophys. 2012, 539, A30. doi: 10.1051/0004-6361/201118268
  • Hurlburt, N.E., Toomre, J. and Massaguer, J.M., Two-dimensional compressible convection extending over multiple scale heights. Astrophys. J. 1984, 282, 557–573. doi: 10.1086/162235
  • Käpylä, P.J., Käpylä, M.J. and Brandenburg, A., Confirmation of bistable stellar differential rotation profiles. Astron. Astrophys. 2014, 570, A43. doi: 10.1051/0004-6361/201423412
  • Käpylä, P.J., Korpi, M.J., Brandenburg, A., Mitra, D. and Tavakol, R., Convective dynamos in spherical wedge geometry. Astron. Nachr. 2010, 331, 73. doi: 10.1002/asna.200911252
  • Käpylä, P.J., Mantere, M.J. and Brandenburg, A., Effects of stratification in spherical shell convection. Astron. Nachr. 2011a, 332, 883. doi: 10.1002/asna.201111619
  • Käpylä, P.J., Mantere, M.J. and Brandenburg, A., Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. Lett. 2012, 755, L22. doi: 10.1088/2041-8205/755/1/L22
  • Käpylä, P.J., Mantere, M.J., Cole, E., Warnecke, J. and Brandenburg, A., Effects of enhanced stratification on equatorward dynamo wave propagation. Astrophys. J. 2013, 778, 41. doi: 10.1088/0004-637X/778/1/41
  • Käpylä, P.J., Mantere, M.J., Guerrero, G., Brandenburg, A. and Chatterjee, P., Reynolds stress and heat flux in spherical shell convection. Astron. Astrophys. 2011b, 531, A162. doi: 10.1051/0004-6361/201015884
  • Käpylä, M.J., Käpylä, P.J., Olspert, N., Brandenburg, A., Warnecke, J., Karak, B.B. and Pelt, J., Multiple dynamo modes as a mechanism for long-term solar activity variations. Astron. Astrophys. 2016, 589, A56. doi: 10.1051/0004-6361/201527002
  • Käpylä, P.J., Käpylä, M.J., Olspert, N., Warnecke, J. and Brandenburg, A., Convection-driven spherical shell dynamos at varying Prandtl numbers. Astron. Astrophys. 2017a, 599, A5. doi: 10.1051/0004-6361/201628973
  • Käpylä, P.J., Rheinhardt, M., Brandenburg, A., Arlt, R., Käpylä, M.J., Lagg, A., Olspert, N. and Warnecke, J., Extended subadiabatic layer in simulations of overshooting convection. Astrophys. J. Lett. 2017b, 845, L23. doi: 10.3847/2041-8213/aa83ab
  • Käpylä, P.J., Viviani, M., Käpylä, M.J. and Brandenburg, A., Effects of a subadiabatic layer on convection and dynamos in spherical wedge simulations. DOI:10.1080/03091929.2019.1571584, 2019.
  • Kitchatinov, L.L., Pipin, V.V. and Rüdiger, G., Turbulent viscosity, magnetic diffusivity, and heat conductivity under the influence of rotation and magnetic field. Astron. Nachr. 1994, 315, 157–170. doi: 10.1002/asna.2103150205
  • Krause, F. and Rädler, K.H., Mean-field Magnetohydrodynamics and Dynamo Theory, 1980 (Pergamon Press: Oxford).
  • Kupka, F. and Muthsam, H.J., Modelling of stellar convection. Liv. Rev. Comp. Astrophys. 2017, 3, 1. doi: 10.1007/s41115-017-0001-9
  • Mabuchi, J., Masada, Y. and Kageyama, A., Differential rotation in magnetized and non-magnetized stars. Astrophys. J. 2015, 806, 10. doi: 10.1088/0004-637X/806/1/10
  • Masada, Y., Yamada, K. and Kageyama, A., Effects of penetrative convection on solar dynamo. Astrophys. J. 2013, 778, 11. doi: 10.1088/0004-637X/778/1/11
  • Mitra, D., Tavakol, R., Brandenburg, A. and Moss, D., Turbulent dynamos in spherical shell segments of varying geometrical extent. Astrophys. J. 2009, 697, 923–933. doi: 10.1088/0004-637X/697/1/923
  • Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, 1978 (Cambridge University Press: Cambridge).
  • Nelson, N.J., Featherstone, N.A., Miesch, M.S. and Toomre, J., Driving solar giant cells through the self-organization of near-surface plumes. Astrophys. J. 2018, 859, 117. doi: 10.3847/1538-4357/aabc07
  • Olspert, N., Käpylä, M.J. and Pelt, J., Method for estimating cycle lengths from multidimensional time series: Test cases and application to a massive “in silico” dataset, in 2016 IEEE International Conference on Big Data, BigData 2016, Washington DC, USA, December 5–8, 2016, 2016, pp. 3214–3223.
  • Pelt, J., Phase dispersion minimization methods for estimation of periods from unequally spaced sequences of data. In Statistical Methods in Astronomy, edited by E.J. Rolfe, Vol. 201, pp. 37–42, Nov., 1983 (Strasbourg: ESA Special Publication).
  • Rempel, M., Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 2005, 622, 1320–1332. doi: 10.1086/428282
  • Rüdiger, G., Differential Rotation and Stellar Convection. Sun and Solar-type Stars, 1989 (Akademie Verlag: Berlin).
  • Schrinner, M., Rädler, K.H., Schmitt, D., Rheinhardt, M. and Christensen, U., Mean-field view on rotating magnetoconvection and a geodynamo model. Astron. Nachr. 2005, 326, 245–249. doi: 10.1002/asna.200410384
  • Schrinner, M., Rädler, K.H., Schmitt, D., Rheinhardt, M. and Christensen, U.R., Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dynam. 2007, 101, 81–116. doi: 10.1080/03091920701345707
  • Simitev, R.D., Kosovichev, A.G. and Busse, F.H., Dynamo effects near the transition from solar to anti-solar differential rotation. Astrophys. J. 2015, 810, 80. doi: 10.1088/0004-637X/810/1/80
  • Singh, H.P., Roxburgh, I.W. and Chan, K.L., A study of penetration at the bottom of a stellar convective envelope and its scaling relationships. Astron. Astrophys. 1998, 340, 178–182.
  • Smolarkiewicz, P.K. and Charbonneau, P., EULAG, a computational model for multiscale flows: An MHD extension. J. Comp. Phys. 2013, 236, 608–623. doi: 10.1016/j.jcp.2012.11.008
  • Tian, C.L., Deng, L.C. and Chan, K.L., Numerical simulations of downward convective overshooting in giants. Monthly Notices Roy. Astron. Soc. 2009, 398, 1011–1022. doi: 10.1111/j.1365-2966.2009.15178.x
  • Tremblay, P.E., Ludwig, H.G., Freytag, B., Fontaine, G., Steffen, M. and Brassard, P., Calibration of the mixing-length theory for convective white dwarf envelopes. Astrophys. J. 2015, 799, 142. doi: 10.1088/0004-637X/799/2/142
  • Warnecke, J., Käpylä, P.J., Käpylä, M.J. and Brandenburg, A., On the cause of solar-like equatorward migration in global convective dynamo simulations. Astrophys. J. Lett. 2014, 796, L12. doi: 10.1088/2041-8205/796/1/L12
  • Warnecke, J., Käpylä, P.J., Käpylä, M.J. and Brandenburg, A., Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astron. Astrophys. 2016, 596, A115. doi: 10.1051/0004-6361/201526131
  • Warnecke, J., Käpylä, P.J., Mantere, M.J. and Brandenburg, A., Spoke-like differential rotation in a convective dynamo with a coronal envelope. Astrophys. J. 2013, 778, 141. doi: 10.1088/0004-637X/778/2/141
  • Warnecke, J., Rheinhardt, M., Tuomisto, S., Käpylä, P.J., Käpylä, M.J. and Brandenburg, A., Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron. Astrophys. 2018, 609, A51. doi: 10.1051/0004-6361/201628136
  • Weiss, A., Hillebrandt, W., Thomas, H.C. and Ritter, H., Cox and Giuli's Principles of Stellar Structure, 2004 (Cambridge Scientific Publishers Ltd: Cambridge, UK).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.