144
Views
5
CrossRef citations to date
0
Altmetric
Articles

Driving solar coronal MHD simulations on high-performance computers

ORCID Icon
Pages 235-260 | Received 30 Aug 2018, Accepted 11 Jul 2019, Published online: 29 Jul 2019

References

  • Bingert, S., Zacharias, P., Peter, H. and Gudiksen, B., On the nature of coronal loops above the quiet sun network. Adv. Space Res. 2010, 45, 310–313. doi: 10.1016/j.asr.2009.08.020
  • Bourdin, P.A., Denoising observational data. Contr. Astron. Obs. Skalnate Pleso 2011, 41, 149–155.
  • Bourdin, P.A., Observationally Driven 3D MHD Model of the Solar Corona Above a Magnetically Active Region, 2014a (Berlin: uni-edition GmbH.), ISBN 978-3-944072-03-6.
  • Bourdin, P.A., Standard 1D solar atmosphere as initial condition for MHD simulations and switch-on effects. Cent. Eur. Astrophys. Bull. 2014b, 38, 1–10.
  • Bourdin, P.A., Plasma beta stratification in the solar atmosphere: A possible explanation for the penumbra formation. Astrophys. J. Lett. 2017, 850, L29 (5pp).
  • Bourdin, P.A., Bingert, S. and Peter, H., Observationally driven 3D MHD model of the solar corona above an active region. Astron. Astrophys. 2013, 555, A123. doi: 10.1051/0004-6361/201321185
  • Bourdin, P.A., Bingert, S. and Peter, H., Coronal loops above an active region: Observation versus model. Publ. Astron. Soc. Jpn. 2014, 66, 1–8. doi: 10.1093/pasj/psu123
  • Bourdin, P.A., Bingert, S. and Peter, H., Coronal energy input and dissipation in a solar active region 3D MHD model. Astron. Astrophys. 2015, 580, A72. doi: 10.1051/0004-6361/201525839
  • Bourdin, P.A., Bingert, S. and Peter, H., Scaling laws of coronal loops compared to a 3D MHD model of an active region. Astron. Astrophys. 2016, 589, A86. doi: 10.1051/0004-6361/201525840
  • Bourdin, P.A., Singh, N. and Brandenburg, A., Magnetic helicity reversal in the corona at small plasma beta. Astrophys. J. 2018, 869, 2. doi: 10.3847/1538-4357/aae97a
  • Chen, F., Peter, H., Bingert, S. and Cheung, M.C.M., A model for the formation of the active region corona driven by magnetic flux emergence. Astron. Astrophys. 2014, 564, A12. doi: 10.1051/0004-6361/201322859
  • Cook, J.W., Cheng, C.C., Jacobs, V.L. and Antiochos, S.K., Effect of coronal elemental abundances on the radiative loss function. Astrophys. J. 1989, 338, 1176–1183. doi: 10.1086/167268
  • Gudiksen, B. and Nordlund, Å., Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. Lett. 2002, 572, L113. doi: 10.1086/341600
  • Gudiksen, B. and Nordlund, Å., An ab initio approach to the solar coronal heating problem. Astrophys. J. 2005, 618, 1020–1030. doi: 10.1086/426063
  • Hansteen, V.H., Hara, H., Pontieu, B.D. and Carlsson, M., On redshifts and blueshifts in the transition region and corona. Astrophys. J. 2010, 718, 1070–1078. doi: 10.1088/0004-637X/718/2/1070
  • Klimchuk, J.A., On solving the coronal heating problem. Sol. Phys. 2006, 234, 41–77. doi: 10.1007/s11207-006-0055-z
  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A. and Golub, L., The Hinode (Solar-B) mission: An overview. Sol. Phys. 2007, 243, 3–17. doi: 10.1007/s11207-007-9014-6
  • Lites, B.W., Akin, D.L., Card, G., Cruz, T., Duncan, D.W., Edwards, C.G., Elmore, D.F., Hoffmann, C., Katsukawa, Y., Katz, N., Kubo, M., Ichimoto, K., Shimizu, T., Shine, R.A., Streander, K.V., Suematsu, A., Tarbell, T.D., Title, A.M. and Tsuneta, S., The Hinode spectro-polarimeter. Sol. Phys. 2013, 283, 579–599. doi: 10.1007/s11207-012-0206-3
  • Martínez-Sykora, J., Hansteen, V. and Moreno-Insertis, F., On the origin of the type II spicules: Dynamic three-dimensional MHD simulations. Astrophys. J. 2011, 736, 9. doi: 10.1088/0004-637X/736/1/9
  • Parker, E.N., Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 1972, 174, 499–510. doi: 10.1086/151512
  • Parker, E.N., Nanoflares and the solar X-ray corona. Astrophys. J. 1988, 330, 474–479. doi: 10.1086/166485
  • Peter, H. and Bingert, S., Constant cross section of loops in the solar corona. Astron. Astrophys. 2012, 548, A1. doi: 10.1051/0004-6361/201219473
  • Peter, H., Bingert, S., Klimchuk, J.A., de Forest, C., Cirtain, J.W., Golub, L., Winebarger, A.R., Kobayashi, K. and Korreck, K.E., Structure of solar coronal loops: From miniature to large-scale. Astron. Astrophys. 2013, 556, A104. doi: 10.1051/0004-6361/201321826
  • Peter, H., Warnecke, J., Chitta, L.P. and Cameron, R.H., Limitations of force-free magnetic field extrapolations: Revisiting basic assumptions. Astron. Astrophys. 2015, 584, A68. doi: 10.1051/0004-6361/201527057
  • Rappazzo, A.F., Velli, M., Einaudi, G. and Dahlburg, R.B., Coronal heating, weak MHD turbulence, and scaling laws. Astrophys. J. Lett. 2007, 657, L47–L51. doi: 10.1086/512975
  • Rappazzo, A.F., Velli, M., Einaudi, G. and Dahlburg, R.B., Nonlinear dynamics of the Parker scenario for coronal heating. Astrophys. J. 2008, 677, 1348–1366. doi: 10.1086/528786
  • Rempel, M., Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure. Astrophys. J. 2012, 750, 62. doi: 10.1088/0004-637X/750/1/62
  • Rempel, M., Extension of the MURaM radiative MHD code for coronal simulations. Astrophys. J. 2017, 834, 10. doi: 10.3847/1538-4357/834/1/10
  • Ruiz Cobo, B., del Toro Iniesta, J.C., Rodriguez Hidalgo, I., Collados, M. and Sanchez Almeida, J.. Empirical model of an average solar granule. In Cool Stars, Stellar Systems, and the Sun, edited by R. Pallavicini and A.K. Dupree, Vol. 109 of Astronomical Society of the Pacific Conference Series, San Francisco, USA: Astronomical Society of the Pacific (ASP), 1996, p. 155.
  • Schrijver, C.J., Hagenaar, H.J. and Title, A.M., On the patterns of the solar granulation and supergranulation. Astrophys. J. 1997, 475, 328–337. doi: 10.1086/303528
  • Spiegel, E.A., The smoothing of temperature fluctuations by radiative transfer. Astrophys. J. 1957, 126, 202. doi: 10.1086/146386
  • Spitzer, L. and Härm, R., Transport phenomena in a completely ionized gas. Phys. Rev. 1953, 89, 977–981. doi: 10.1103/PhysRev.89.977
  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D. and Owens, J.K., The solar optical telescope for the Hinode mission: An overview. Sol. Phys. 2008, 249, 167–196. doi: 10.1007/s11207-008-9174-z
  • van Ballegooijen, A.A., Asgari-Targhi, M. and Berger, M.A., On the relationship between photospheric footpoint motions and coronal heating in solar active regions. Astrophys. J. 2014, 787, 87. doi: 10.1088/0004-637X/787/1/87
  • van Ballegooijen, A.A., Asgari-Targhi, M., Cranmer, S.R. and DeLuca, E.E., Heating of the solar chromosphere and corona by Alfvén wave turbulence. Astrophys. J. 2011, 736, 3. doi: 10.1088/0004-637X/736/1/3
  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V. and Erdélyi, R., Magnetic tornadoes as energy channels into the solar corona. Nature 2012, 486, 505–508. doi: 10.1038/nature11202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.