1,127
Views
8
CrossRef citations to date
0
Altmetric
Articles

Convergence properties of detonation simulations

ORCID Icon, , , ORCID Icon, & ORCID Icon
Pages 58-76 | Received 11 Feb 2019, Accepted 12 Sep 2019, Published online: 25 Sep 2019

References

  • Babkovskaia, N., Haugen, N.E.L. and Brandenburg, A., A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comp. Phys. 2011, 230, 1–12. doi: 10.1016/j.jcp.2010.08.028
  • Bartenev, A. and Gelfand, B., Spontaneous initiation of detonations. Prog. Energy Combust. Sci. 2000, 26, 29–55. doi: 10.1016/S0360-1285(99)00007-6
  • Bates, L., Bradley, D., Paczko, G. and Peters, N., Engine hot spots: Modes of auto-ignition and reaction propagation. Combust. Flame 2016, 166, 80–85. doi: 10.1016/j.combustflame.2016.01.002
  • Bradley, D. and Kalghatgi, G.T., Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 2009, 156, 2307–2318. doi: 10.1016/j.combustflame.2009.08.003
  • Bradley, D., Autoignitions and detonations in engines and ducts. Phil. Trans. Roy. Soc. A 2012, 370, 689–714. doi: 10.1098/rsta.2011.0367
  • Cai, Y., Ao, Y., Yang, C., Ma, W. and Zhao, H., Extreme-scale high-order WENO simulations of 3-D detonation wave with 10 million cores. ACM T. Archit. Code Op. 2018, 15, 26.
  • Coffee, T.P. and Heimerl, J.M., Transport algorithms for premixed, laminar steady-state flames. Combust. Flame 1981, 43, 273–289. doi: 10.1016/0010-2180(81)90027-4
  • Dai, P. and Chen, Z., Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 2015, 162, 4183–4193. doi: 10.1016/j.combustflame.2015.08.002
  • Dai, P., Chen, Z., Chen, S. and Ju, Y., Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 2015, 35, 3045–3052. doi: 10.1016/j.proci.2014.06.102
  • Deng, X., Xie, B., Loubère, R., Shimizu, Y. and Xiao, F., Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts. Comput. Fluids 2018, 171, 1–14. doi: 10.1016/j.compfluid.2018.05.015
  • Deng, X., Xie, B., Teng, H. and Xiao, F., High resolution multi-moment finite volume method for supersonic combustion on unstructured grids. Appl. Math. Model. 2019, 66, 404–423. doi: 10.1016/j.apm.2018.08.010
  • Dong, H., Fu, L., Zhang, F., Liu, Y. and Liu, J., Detonation simulations with a fifth-order teno scheme. Commun. Comput. Phys. 2019, 25, 1357–1393. doi: 10.4208/cicp.OA-2018-0008
  • Evlampiev, A., Numerical Combustion Modeling for Complex Reaction Systems, Vol. 68/04, 2007 (Eindhoven Techn. Univ.: Eindhoven).
  • Fan, W., Zhong, F., Ma, S. and Zhang, X., Numerical study of convective heat transfer of supersonic combustor with varied inlet flow conditions. Acta Mech. Sin. 2019, doi: 10.1007%2Fs10409-019-00882-x
  • Gottlieb, S., Shu, C.W. and Tadmor, E., Strong stability-preserving high-order time discretization methods. SIAM Rev. 2001, 43, 89–112. doi: 10.1137/S003614450036757X
  • Gu, X.J., Emerson, D.R. and Bradley, D., Modes of reaction front propagation from hot spots. Combust. Flame 2003, 133, 63–74. doi: 10.1016/S0010-2180(02)00541-2
  • He, L., Theoretical determination of the critical conditions for the direct initiation of detonations in hydrogen-oxygen mixtures. Combust. Flame 1996, 104, 401–418. doi: 10.1016/0010-2180(96)00141-1
  • He, L. and Clavin, P., Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases, Twenty-Fourth Symposium on Combustion, University of Sydney, Sydney, Australia, Vol. 24, 1992, pp. 1861–1867.
  • Huang, J. and Shu, C.W., Positivity-preserving time discretizations for production–destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 2019, 78, 1811–1839. doi: 10.1007/s10915-018-0852-1
  • Jiang, G. and Shu, C., Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. doi: 10.1006/jcph.1996.0130
  • Kéromnès, A., Metcalfe, W.K., Heufer, K.A., Donohoe, N., Das, A.K., Sung, C.J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., Krejci, M.C., Petersen, E.L., Pitz, W.J. and Curran, H.J., An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 2013, 160, 995–1011. doi: 10.1016/j.combustflame.2013.01.001
  • Khokhlov, A., Oran, E. and Wheeler, J., A theory of deflagration-to-detonation transition in unconfined flames. Combust. Flame 1997, 108, 503–517. doi: 10.1016/S0010-2180(96)00105-8
  • Kurganov, A. and Liu, Y., New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 2012, 231, 8114–8132. doi: 10.1016/j.jcp.2012.07.040
  • Kurtz, M.D. and Regele, J.D., Acoustic timescale characterisation of a one-dimensional model hot spot. Combust. Theory Model. 2014, 18, 532–551. doi: 10.1080/13647830.2014.934922
  • Kuznetsov, M., Alekseev, V., Matsukov, I. and Dorofeev, S., DDT in a smooth tube filled with a hydrogen oxygen mixture. Shock Waves 2005, 14, 205–215. doi: 10.1007/s00193-005-0265-6
  • Lee, J. and Moen, I., The mechanisms of transition from deflagration to detonation in vapor cloud explosions. Prog. Energ. Combust. Sci. 1980, 6, 359–389. doi: 10.1016/0360-1285(80)90011-8
  • Lee, J., Knystautas, R. and Yoshikawa, N., Photochemical initiation of gaseous detonations. Acta Astronaut. 1978, 5, 971–982. doi: 10.1016/0094-5765(78)90003-6
  • Liberman, M.A., Kiverin, A.D. and Ivanov, M.F., On detonation initiation by a temperature gradient for a detailed chemical reaction models. Phys. Lett. A 2011, 375, 1803–1808. doi: 10.1016/j.physleta.2011.03.026
  • Liberman, M.A., Kiverin, A. and Ivanov, M., Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. Phys. Rev. E 2012, 85, 056312. doi: 10.1103/PhysRevE.85.056312
  • Liberman, M.A., Wang, C., Qian, C. and Liu, J., Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures. Combust. Theory Model. 2019, 23, 467–495. doi: 10.1080/13647830.2018.1551578
  • Lo, S.C., Blaisdelly, G.A. and Lyrintzisz, A.S., High-order shock capturing schemes for turbulence calculations, in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 8–11, 2007, 2007, pp. 1–18.
  • Mourits, M.M. and Rummens, F.H.A., A critical evaluation of Lennard-Jones and Stockmayer potential parameters and of some correlation methods. Can. J. Chem. 1977, 55, 3007–3020. doi: 10.1139/v77-418
  • Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion, 2005 (RT Edwards, Inc. Philadelphia, USA).
  • Rudloff, J., Zaccardi, J.M., Richard, S. and Anderlohr, J., Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode. Proc. Combust. Inst. 2013, 34, 2959–2967. doi: 10.1016/j.proci.2012.05.005
  • von Neumann, J. and Richtmyer, R.D., A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 1950, 21, 232–237. doi: 10.1063/1.1699639
  • Wang, C., Qian, C., Liu, J. and Liberman, M.A., Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air. Combust. Flame 2018, 197, 400–415. doi: 10.1016/j.combustflame.2018.08.017
  • Wilke, C.R., A viscosity equation for gas mixtures. J. Comp. Phys. 1950, 18, 517–519.
  • Zeldovich, Y.B., Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 1980, 39, 211–214. doi: 10.1016/0010-2180(80)90017-6
  • Zeldovich, Y., Librovich, V., Makhviladze, G. and Sivashinsky, G., On the development of detonation in a non-uniformly preheated gas. Acta Astron. 1970, 15, 313–321.
  • Zeldovich, Y.B., Gelfand, B., Tsyganov, S., Frolov, S. and Polenov, A., Concentration and temperature nonuniformities of combustible mixtures as reason for pressure waves generation. Dyn. Explosions 1988, 114, 99.
  • Zhao, W.G., Zheng, H.W., Liu, F.J., Shi, X.T., Gao, J., Hu, N., Lv, M., Chen, S.C. and Zhao, H.D., An efficient unstructured WENO method for supersonic reactive flows. Acta Mech. Sin. 2018, 34, 623–631. doi: 10.1007/s10409-018-0756-1