699
Views
7
CrossRef citations to date
0
Altmetric
Articles

Non-Fourier description of heat flux evolution in 3D MHD simulations of the solar corona

ORCID Icon & ORCID Icon
Pages 261-281 | Received 04 Nov 2018, Accepted 17 Sep 2019, Published online: 01 Oct 2019

References

  • Abbett, W.P., The magnetic connection between the convection zone and corona in the quiet sun. Astrophys. J. 2007, 665, 1469–1488. doi: 10.1086/519788
  • Bingert, S., 3D MHD models of the solar corona: active region and network. Ph.D. Thesis, Albert-Ludwig-Universität Freiburg, 2009.
  • Bingert, S. and Peter, H., Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys. 2011, 530, A112. doi: 10.1051/0004-6361/201016019
  • Bingert, S. and Peter, H., Nanoflare statistics in an active region 3D MHD coronal model. Astron. Astrophys. 2013, 550, A30. doi: 10.1051/0004-6361/201220469
  • Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P. and Weber, M., Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 2012, 275, 41–66. doi: 10.1007/s11207-011-9804-8
  • Boris, J.P., A physically motivated solution of the Alfven problem. NRL Memorandum Report, 2167, 1970.
  • Bourdin, P.A., Bingert, S. and Peter, H., Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region. Astron. Astrophys. 2013, 555, A123. doi: 10.1051/0004-6361/201321185
  • Bourdin, P.A., Bingert, S. and Peter, H., Coronal loops above an active region: observation versus model. PASJ 2014, 66, S7. doi: 10.1093/pasj/psu123
  • Bourdin, P.A., Bingert, S. and Peter, H., Coronal energy input and dissipation in a solar active region 3D MHD model. Astron. Astrophys. 2015, 580, A72. doi: 10.1051/0004-6361/201525839
  • Bourdin, P., Singh, N.K. and Brandenburg, A., Magnetic helicity reversal in the corona at small plasma beta. Astrophys. J. 2018, 869, 2. doi: 10.3847/1538-4357/aae97a
  • Brandenburg, A. and Chatterjee, P., Strong nonlocality variations in a spherical mean-field dynamo. Astron. Nachr. 2018, 339, 118–126. doi: 10.1002/asna.201813472
  • Brandenburg, A., Käpylä, P.J. and Mohammed, A., Non-Fickian diffusion and tau approximation from numerical turbulence. Phys. Fluids 2004, 16, 1020–1027. doi: 10.1063/1.1651480
  • Chatterjee, P., Testing Alfvén wave propagation in a realistic set-up of the solar atmosphere. Geophys. Astrophys. Fluid Dyn. 2018, submitted, arXiv: 1806.08166.
  • Chatterjee, P. and Fan, Y., Simulation of homologous and cannibalistic coronal mass ejections produced by the emergence of a twisted flux rope into the solar corona. Astrophys. J. Lett. 2013, 778, L8. doi: 10.1088/2041-8205/778/1/L8
  • Chen, F., Peter, H., Bingert, S. and Cheung, M.C.M., A model for the formation of the active region corona driven by magnetic flux emergence. Astron. Astrophys. 2014, 564, A12. doi: 10.1051/0004-6361/201322859
  • Chen, F., Peter, H., Bingert, S. and Cheung, M.C.M., Magnetic jam in the corona of the Sun. Nat. Phys. 2015, 11, 492–495. doi: 10.1038/nphys3315
  • Cook, J.W., Cheng, C.C., Jacobs, V.L. and Antiochos, S.K., Effect of coronal elemental abundances on the radiative loss function. Astrophys. J. 1989, 338, 1176–1183. doi: 10.1086/167268
  • Galsgaard, K. and Nordlund, Å., Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 1996, 101, 13445–13460. doi: 10.1029/96JA00428
  • Gent, F.A., Shukurov, A., Fletcher, A., Sarson, G.R. and Mantere, M.J., The supernova-regulated ISM – I. The multiphase structure. Mon. Not. Roy. Astron. Soc. 2013, 432, 1396–1423. doi: 10.1093/mnras/stt560
  • Gombosi, T.I., Tóth, G., De Zeeuw, D.L., Hansen, K.C., Kabin, K. and Powell, K.G., Semirelativistic Magnetohydrodynamics and Physics-Based Convergence Acceleration. J. Comput. Phys. 2002, 177, 176–205. doi: 10.1006/jcph.2002.7009
  • Gudiksen, B.V. and Nordlund, Å., Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. Lett. 2002, 572, L113–L116. doi: 10.1086/341600
  • Gudiksen, B.V. and Nordlund, Å., An ab initio approach to solar coronal loops. Astrophys. J. 2005a, 618, 1031–1038. doi: 10.1086/426064
  • Gudiksen, B.V. and Nordlund, Å., An ab initio approach to the solar coronal heating problem. Astrophys. J. 2005b, 618, 1020–1030. doi: 10.1086/426063
  • Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J. and Martínez-Sykora, J., The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 2011, 531, A154. doi: 10.1051/0004-6361/201116520
  • Hansteen, V.H., Hara, H., De Pontieu, B. and Carlsson, M., On redshifts and blueshifts in the transition region and corona. Astrophys. J. 2010, 718, 1070–1078. doi: 10.1088/0004-637X/718/2/1070
  • Haugen, N.E.L., Brandenburg, A. and Mee, A.J., Mach number dependence of the onset of dynamo action. Mon. Not. Roy. Astron. Soc. 2004, 353, 947–952. doi: 10.1111/j.1365-2966.2004.08127.x
  • Hubbard, A. and Brandenburg, A., Memory effects in turbulent transport. Astrophys. J. 2009, 706, 712–726. doi: 10.1088/0004-637X/706/1/712
  • Losada, I.R., Warnecke, J., Brandenburg, A., Kleeorin, N. and Rogachevskii, I., Magnetic bipoles in rotating turbulence with coronal envelope. Astron. Astrophys. 2019, 621, A61. doi: 10.1051/0004-6361/201833018
  • Mok, Y., Mikić, Z., Lionello, R. and Linker, J.A., Calculating the thermal structure of solar active regions in three dimensions. Astrophys. J. 2005, 621, 1098–1108. doi: 10.1086/427739
  • Mok, Y., Mikić, Z., Lionello, R. and Linker, J.A., The formation of coronal loops by thermal instability in three dimensions. Astrophys. J. Lett. 2008, 679, L161. doi: 10.1086/589440
  • Parker, E.N., Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 1972, 174, 499. doi: 10.1086/151512
  • Parker, E.N., Nanoflares and the solar X-ray corona. Astrophys. J. 1988, 330, 474–479. doi: 10.1086/166485
  • Peter, H., What can large-scale magnetohydrodynamic numerical experiments tell us about coronal heating? Phil. Trans. Roy. Soc. Lond. A 2015, 373, 20150055–20150055. doi: 10.1098/rsta.2015.0055
  • Peter, H., Gudiksen, B.V. and Nordlund, Å., Coronal heating through braiding of magnetic field lines. Astrophys. J. Lett. 2004, 617, L85–L88. doi: 10.1086/427168
  • Peter, H., Gudiksen, B.V. and Nordlund, Å., Forward modeling of the corona of the sun and solar-like stars: from a three-dimensional magnetohydrodynamic model to synthetic extreme-ultraviolet spectra. Astrophys. J. 2006, 638, 1086–1100. doi: 10.1086/499117
  • Peter, H., Warnecke, J., Chitta, L.P. and Cameron, R.H., Limitations of force-free magnetic field extrapolations: revisiting basic assumptions. Astron. Astrophys. 2015, 584, A68. doi: 10.1051/0004-6361/201527057
  • Rempel, M., Numerical simulations of quiet sun magnetism: on the contribution from a small-scale dynamo. Astrophys. J. 2014, 789, 132. doi: 10.1088/0004-637X/789/2/132
  • Rempel, M., Extension of the MURaM radiative MHD code for coronal simulations. Astrophys. J. 2017, 834, 10. doi: 10.3847/1538-4357/834/1/10
  • Rheinhardt, M. and Brandenburg, A., Modeling spatio-temporal nonlocality in mean-field dynamos. Astron. Nachr. 2012, 333, 71–77. doi: 10.1002/asna.201111625
  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A. and Tomczyk, S., Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 2012, 275, 229–259. doi: 10.1007/s11207-011-9842-2
  • Spitzer, L., Physics of Fully Ionized Gases, 2nd ed., 1962 (Interscience: New York).
  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester IV, W.B., Tóth, G. and Gombosi, T.I., Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J. 2014, 782, 81. doi: 10.1088/0004-637X/782/2/81
  • Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T. and Linde, T., Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 2005, 429, 335–351. doi: 10.1051/0004-6361:20041507
  • Warnecke, J. and Brandenburg, A., Surface appearance of dynamo-generated large-scale fields. Astron. Astrophys. 2010, 523, A19. doi: 10.1051/0004-6361/201014287
  • Warnecke, J. and Brandenburg, A., Coronal influence on dynamos, in IAU Symposium, Vol. 302 of IAU Symposium, Aug., 2014, pp. 134–137.
  • Warnecke, J. and Peter, H., Data-driven model of the solar corona above an active region. Astron. Astrophys. 2019, 624, L12. doi: 10.1051/0004-6361/201935385
  • Warnecke, J., Brandenburg, A. and Mitra, D., Dynamo-driven plasmoid ejections above a spherical surface. Astron. Astrophys. 2011, 534, A11. doi: 10.1051/0004-6361/201117023
  • Warnecke, J., Brandenburg, A. and Mitra, D., Magnetic twist: a source and property of space weather. JSWSC 2012a, 2, A11.
  • Warnecke, J., Käpylä, P.J., Mantere, M.J. and Brandenburg, A., Ejections of magnetic structures above a spherical wedge driven by a convective dynamo with differential rotation. Sol. Phys. 2012b, 280, 299–319. doi: 10.1007/s11207-012-0108-4
  • Warnecke, J., Käpylä, P.J., Mantere, M.J. and Brandenburg, A., Spoke-like differential rotation in a convective dynamo with a coronal envelope. Astrophys. J. 2013a, 778, 141. doi: 10.1088/0004-637X/778/2/141
  • Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N. and Rogachevskii, I., Bipolar magnetic structures driven by stratified turbulence with a coronal envelope. Astrophys. J. Lett. 2013b, 777, L37. doi: 10.1088/2041-8205/777/2/L37
  • Warnecke, J., Käpylä, P.J., Käpylä, M.J. and Brandenburg, A., Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astron. Astrophys. 2016a, 596, A115. doi: 10.1051/0004-6361/201526131
  • Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N. and Rogachevskii, I., Bipolar region formation in stratified two-layer turbulence. Astron. Astrophys. 2016b, 589, A125. doi: 10.1051/0004-6361/201525880
  • Warnecke, J., Chen, F., Bingert, S. and Peter, H., Current systems of coronal loops in 3D MHD simulations. Astron. Astrophys. 2017, 607, A53. doi: 10.1051/0004-6361/201630095
  • Wiegelmann, T., Nonlinear force-free modeling of the solar coronal magnetic field. J. Geophys. Res. 2008, 113, A12. doi: 10.1029/2007JA012432