1,244
Views
2
CrossRef citations to date
0
Altmetric
Articles

The time step constraint in radiation hydrodynamics

ORCID Icon & ORCID Icon
Pages 162-195 | Received 18 Jan 2019, Accepted 02 Oct 2019, Published online: 17 Oct 2019

References

  • Babkovskaia, N., Haugen, N.E.L. and Brandenburg, A., A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 2011, 230, 1–12. doi: 10.1016/j.jcp.2010.08.028
  • Balbus, S.A. and Hawley, J.F., A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 1991, 376, 214–222. doi: 10.1086/170270
  • Barekat, A. and Brandenburg, A., Near-polytropic stellar simulations with a radiative surface. Astron. Astrophys. 2014, 571, A68. doi: 10.1051/0004-6361/201322461
  • Bhat, P. and Brandenburg, A., Hydraulic effects in a radiative atmosphere with ionization. Astron. Astrophys. 2016, 587, A90. doi: 10.1051/0004-6361/201425396
  • Bingert, S. and Peter, H., Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys. 2011, 530, A112. doi: 10.1051/0004-6361/201016019
  • Bourdin, Ph.-A., Bingert, S. and Peter, H., Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region. Astron. Astrophys. 2013, 555, A123. doi: 10.1051/0004-6361/201321185
  • Brandenburg, A., Computational aspects of astrophysical MHD and turbulence. In Advances in nonlinear dynamos (The Fluid Mechanics of Astrophysics and Geophysics, Vol. 9), edited by A. Ferriz-Mas and M. Núñez, pp. 269–344, 2003 (Taylor and Francis: London and New York).
  • Brandenburg, A., Stellar mixing length theory with entropy rain. Astrophys. J. 2016, 832, 6. doi: 10.3847/0004-637X/832/1/6
  • Brandenburg, A., Nordlund, Å., Stein, R.F. and Torkelsson, U., Dynamo generated turbulence and large scale magnetic fields in a Keplerian shear flow. Astrophys. J. 1995, 446, 741–754. doi: 10.1086/175831
  • Castor, J.I., Radiation Hydrodynamics, 2004 (Cambridge University Press: Cambridge).
  • Caunt, S.E. and Korpi, M.J., A 3D MHD model of astrophysical flows: Algorithms, tests and parallelisation. Astron. Astrophys. 2001, 369, 706–728. doi: 10.1051/0004-6361:20010157
  • Charney, J.G., Fjørtoft, R. and von Neumann, J., Numerical integration of the barotropic vorticity equation. Tellus 1950, 2, 237–254. doi: 10.3402/tellusa.v2i4.8607
  • Coleman, M.S.B., Blaes, O., Hirose, S. and Hauschildt, P.H., Convection enhances magnetic turbulence in AM CVn accretion disks. Astrophys. J. 2018, 857, 52. doi: 10.3847/1538-4357/aab6a7
  • Courant, R., Friedrichs, K. and Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74; Engl. Transl.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1967, 11, 215–234. doi: 10.1007/BF01448839
  • Crank, J. and Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of heat conduction type. Proc. Camb. Phil. Soc. 1947, 43, 50–67. doi: 10.1017/S0305004100023197
  • Davis, S.W., Stone, J.M. and Jiang, Y.F., A radiation transfer solver for Athena using short characteristics. Astrophys. J. 2012, 199, 19. doi: 10.1088/0067-0049/199/1/19
  • Deardorff, J.W., The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmosph. Sci. 1966, 23, 503–506. doi: 10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2
  • Deardorff, J.W., Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res. 1972, 77, 5900–5904. doi: 10.1029/JC077i030p05900
  • Edwards, J.M., Two-dimensional radiative convection in the Eddington approximation. Month. Not. Roy. Astron. Soc. 1990, 242, 224–234. doi: 10.1093/mnras/242.2.224
  • Finlator, K., Özel, F. and Davé, R., A new moment method for continuum radiative transfer in cosmological re-ionization. Month. Not. Roy. Astron. Soc. 2009, 393, 1090–1106. doi: 10.1111/j.1365-2966.2008.14190.x
  • Frank, J., King, A.R. and Raine, D.J., Accretion Power in Astrophysics, 1992 (Cambridge University Press: Cambridge).
  • Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W. and Steiner, O., Simulations of stellar convection with CO5BOLD. J. Comput. Phys. 2012, 231, 919–959. doi: 10.1016/j.jcp.2011.09.026
  • Gnedin, N.Y. and Abel, T., Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism. New Astron. 2001, 6, 437. doi: 10.1016/S1384-1076(01)00068-9
  • González, M., Audit, E. and Huynh, P., HERACLES: a three-dimensional radiation hydrodynamics code. Astron. Astrophys. 2007, 464, 429–435. doi: 10.1051/0004-6361:20065486
  • Gudiksen, B.V. and Nordlund, Å., Bulk heating and slender magnetic loops in the solar corona. Astrophys. J. 2002, 572, L113–L116. doi: 10.1086/341600
  • Gudiksen, B.V. and Nordlund, Å., An ab initio approach to the solar coronal heating problem. Astrophys. J. 2005a, 618, 1020–1030. doi: 10.1086/426063
  • Gudiksen, B.V. and Nordlund, Å., An ab initio approach to solar coronal loops. Astrophys. J. 2005b, 618, 1031–1038. doi: 10.1086/426064
  • Heinemann, T., Dobler, W., Nordlund, Å. and Brandenburg, A., Radiative transfer in decomposed domains. Astron. Astrophys. 2006, 448, 731–737. doi: 10.1051/0004-6361:20053120
  • Heinemann, T., Nordlund, Å., Scharmer, G.B. and Spruit, H.C., MHD simulations of penumbra fine structure. Astrophys. J. 2007, 669, 1390–1394. doi: 10.1086/520827
  • Hurlburt, N.E., Toomre, J. and Massaguer, J.M., Two-dimensional compressible convection extending over multiple scale heights. Astrophys. J. 1984, 282, 557–573. doi: 10.1086/162235
  • Jiang, Y.-F., Stone, J.M. and Davis, S.W., A Godunov method for multidimensional radiation magnetohydrodynamics based on a variable Eddington tensor. Astrophys. J. 2012, 199, 14. doi: 10.1088/0067-0049/199/1/14
  • Kähler, H., The local Vogt-Russell theorem. Astron. Astrophys. 1972, 20, 105–110.
  • Käpylä, P.J., Mantere, M.J., Cole, E., Warnecke, J. and Brandenburg, A., Effects of strong stratification on equatorward dynamo wave propagation. Astrophys. J. 2013, 778, 41. doi: 10.1088/0004-637X/778/1/41
  • Käpylä, P.J., Rheinhardt, M., Brandenburg, A., Arlt, R., Käpylä, M.J., Lagg, A., Olspert, N. and Warnecke, J., Extended subadiabatic layer in simulations of overshooting convection. Astrophys. J. Lett. 2017, 845, L23. doi: 10.3847/2041-8213/aa83ab
  • Käpylä, P.J., Gent, F.A., Olspert, N., Käpylä, M.J. and Brandenburg, A., Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection. Geophys. Astrophys. Fluid. 2020, 114, 8–34. doi:10.1080/03091929.2019.1571586.
  • Käpylä, P.J., Viviani, M., Käpylä, M.J., Brandenburg, A. and Spada, F., Effects of a subadiabatic layer on convection and dynamos in spherical wedge simulations. Geophys. Astrophys. Fluid Dynam. 2019, 113, 149–183. doi: 10.1080/03091929.2019.1571584
  • Kippenhahn, R. and Weigert, A., Stellar Structure and Evolution, 1990 (Berlin: Springer).
  • Krumholz, M.R., Klein, R.I., McKee, C.F. and Bolstad, J., Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. Astrophys. J. 2007, 667, 626–643. doi: 10.1086/520791
  • Lasota, J.-P., The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 2001, 45, 449–508. doi: 10.1016/S1387-6473(01)00112-9
  • Mihalas, D., Stellar Atmospheres, 1978 (San Francisco: W. H. Freeman).
  • Nordlund, Å., Numerical simulations of the solar granulation I. Basic equations and methods. Astron. Astrophys. 1982, 107, 1–10.
  • Nordlund, Å., Ramsey, J.P., Popovas, A. and Küffmeier, M., DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals. Month. Not. Roy. Astron. Soc. 2018, 477, 624–638. doi: 10.1093/mnras/sty599
  • Owocki, S.P. and Sundqvist, J.O., Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability. Month. Not. Roy. Astron. Soc. 2018, 475, 814–821. doi: 10.1093/mnras/stx3225
  • Pomraning, G.C., The non-equilibrium Marshak wave problem. J. Quant. Spectroscopy Radiative Transfer 1979, 21, 249–261. doi: 10.1016/0022-4073(79)90016-5
  • Prendergast, K.H. and Spiegel, E.A., Photon bubbles. Comm. Astrophys. Spa. Phys. 1973, 5, 43–50.
  • Rüdiger, G., Differential Rotation and Stellar Convection: Sun and Solar-type Stars, 1989 (Gordon and Breach: New York).
  • Skartlien, R., A multigroup method for radiation with scattering in three-dimensional hydrodynamic simulations. Astrophys. J. 2000, 536, 465–480. doi: 10.1086/308934
  • Skinner, M.A. and Ostriker, E.C., A two-moment radiation hydrodynamics module in Athena using a time-explicit Godunov method. Astrophys. J. Suppl. 2013, 206, 1–29. doi: 10.1088/0067-0049/206/2/21
  • Spiegel, E.A., The smoothing of temperature fluctuations by radiative transfer. Astrophys. J. 1957, 126, 202–207. doi: 10.1086/146386
  • Spiegel, E.A., Photoconvection. In Problems of stellar convection, Proceedings of the Thirty-eighth Colloquium, Nice, France, August 16–20, 1976, pp. 267–283, 1977 (Springer-Verlag: Berlin and New York).
  • Spiegel, E.A., Phenomenological photofluiddynamics. EAS Publ. Ser. 2006, 21, 127–145. doi: 10.1051/eas:2006109
  • Spiegel, E.A. and Tao, L., Photofluid instabilities of hot stellar envelopes. Phys. Rev. 1999, 311, 163–176.
  • Spiegel, E.A. and Veronis, G., On the Boussinesq approximation for a compressible fluid. Astrophys. J.1960, 131, 442–447. doi: 10.1086/146849
  • Stein, R.F. and Nordlund, Å., Topology of convection beneath the solar surface. Astrophys. J. Lett.1989, 342, L95–L98. doi: 10.1086/185493
  • Stein, R.F. and Nordlund, Å., Simulations of solar granulation: I. General properties. Astrophys. J.1998, 499, 914–933. doi: 10.1086/305678
  • Stix, M., The Sun: An introduction, 2002 (Springer-Verlag: Berlin).
  • Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, 2002 (Springer-Verlag: Berlin, New York).
  • Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F. and Simon, J.B., Athena: A new code for astrophysical MHD. Astrophys. J. Suppl. 2008, 178, 137–177. doi: 10.1086/588755
  • Stone, J.M., Mihalas, D. and Norman, M., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions: III. The radiation hydrodynamic algorithms and tests. Astrophys. J. 1992, 80, 791–818. doi: 10.1086/191681
  • Stone, J.M. and Norman, M., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions: I. The hydrodynamic algorithms and tests. Astrophys. J. 1992a, 80, 753–790. doi: 10.1086/191680
  • Stone, J.M. and Norman, M., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions: II. The magnetohydrodynamic algorithms and tests. Astrophys. J. 1992b, 80, 791–818. doi: 10.1086/191681
  • Sundqvist, J.O., Owocki, S.P. and Puls, J., 2D wind clumping in hot, massive stars from hydrodynamical line-driven instability simulations using a pseudo-planar approach. Astron. Astrophys. 2018, 611, A17. doi: 10.1051/0004-6361/201731718
  • Trampedach, R., Asplund, M., Collet, R., Nordlund, Å. and Stein, R.F., A grid of three-dimensional stellar atmosphere models of solar metallicity. I. General properties, granulation, and atmospheric expansion. Astrophys. J. 2013, 769, 18. doi: 10.1088/0004-637X/769/1/18
  • Unno, W. and Spiegel, E.A., The Eddington approximation in the radiative heat equation. Publ. Astron. Soc. Jap. 1966, 18, 85–95.
  • Vitense, E., Die Wasserstoffkonvektionszone der Sonne. Z. Astrophys. 1953, 32, 135–164.
  • von Neumann, J. and Richtmyer, R.D., A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 1950, 21, 232–237. doi: 10.1063/1.1699639
  • Williamson, J.H., Low-storage Runge-Kutta schemes. J. Comput. Phys. 1980, 35, 48–56. doi: 10.1016/0021-9991(80)90033-9