170
Views
9
CrossRef citations to date
0
Altmetric
Articles

Spectra of atmospheric water in precipitating quasi-geostrophic turbulence

ORCID Icon, &
Pages 715-741 | Received 06 Jun 2019, Accepted 09 Nov 2019, Published online: 04 Dec 2019

References

  • Armi, L., Hydraulic control of zonal currents on a β-plane. J. Fluid Mech. 1989, 201, 357. doi: 10.1017/S0022112089000972
  • Babiano, A., Basdevant, C., Legras, B. and Sadourny, R., Vorticity and passive-scalar dynamics in two-dimensional turbulence. J. Fluid Mech. 1987, 183, 379–397. doi: 10.1017/S0022112087002684
  • Bannon, P.R., Linear development of quasi-geostrophic baroclinic disturbances with condensational heating. J. Atmos. Sci. 1986, 43, 2261–2274. doi: 10.1175/1520-0469(1986)043<2261:LDOQGB>2.0.CO;2
  • Booth, J.F., Polvani, L., O'Gorman, P.A. and Wang, S., Effective stability in a moist baroclinic wave. Atmos. Sci. Lett. 2014, 16, 56–62. doi: 10.1002/asl2.520
  • Brennan, M.J. and Lackmann, G.M., The influence of incipient latent heat release on the precipitation distribution of the 24-25 January 2000 US east coast cyclone. Mon. Wea. Rev. 2005, 133, 1913–1937. doi: 10.1175/MWR2959.1
  • Bretherton, C.S., Analytical solutions of Emanuel's model of precipitating convection. J. Atmos. Sci. 1987, 44, 3355–3355. doi: 10.1175/1520-0469(1987)044<3355:ASOEMO>2.0.CO;2
  • Charney, J.G., The dynamics of long waves in a baroclinic westerly current. J. Meteor. 1947, 4, 136–162. doi: 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
  • Charney, J.G., On the scale of atmospheric motions. Geofys. Publ. Oslo 1948, 17, 1–17.
  • Charney, J.G., Geostrophic turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. doi: 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
  • Cho, J.Y.N., Newell, R.E. and Sachse, G.W., Anomalous scaling of mesoscale tropospheric humidity fluctuations. Geophys. Res. Lett. 2000, 27, 377–380. doi: 10.1029/1999GL010846
  • Deng, Q., Smith, L.M. and Majda, A.J., Tropical cyclogenesis and vertical shear in a moist Boussinesq model. J. Fluid Mech. 2012, 706, 384–412. doi: 10.1017/jfm.2012.260
  • Dolaptchiev, S.I. and Klein, R., A multiscale model for the planetary and synoptic motions in the atmosphere. J. Atmos. Sci. 2013, 70, 2963–2981. doi: 10.1175/JAS-D-12-0272.1
  • Eady, E.T., Long waves and cyclone waves. Tellus 1949, 1, 33–52. doi: 10.3402/tellusa.v1i3.8507
  • Edwards, T.K., Smith, L.S. and Stechmann, S.N. Atmospheric rivers and water fluxes in precipitating quasi-geostrophic turbulence. 2019, p. submitted.
  • Emanuel, K.A., Some dynamical aspects of precipitating convection. J. Atmos. Sci. 1986, 43, 2183–2198. doi: 10.1175/1520-0469(1986)043<2183:SDAOPC>2.0.CO;2
  • Emanuel, K.A., Fantini, M. and Thorpe, A.J., Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: two-dimensional models. J. Atmos. Sci. 1987, 44, 1559–1573. doi: 10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2
  • Fischer, L., Kiemle, C. and Craig, G.C., Height-resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett. 2012, 39, L06803.
  • Gall, R., The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci. 1976, 33, 1686–1701. doi: 10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2
  • Haidvogel, D.B. and Held, I.M., Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci. 1980, 37, 2644–2660. doi: 10.1175/1520-0469(1980)037<2644:HQGTDB>2.0.CO;2
  • Held, I.M. and O'Brien, E., Quasigeostrophic turbulence in a three-layer model: effects of vertical structure in the mean shear. J. Atmos. Sci. 1992, 49, 1861–1870. doi: 10.1175/1520-0469(1992)049<1861:QTIATL>2.0.CO;2
  • Hernandez-Duenas, G., Majda, A.J., Smith, L.M. and Stechmann, S.N., Minimal models for precipitating turbulent convection. J. Fluid Mech. 2013, 717, 576–611. doi: 10.1017/jfm.2012.597
  • Houze, R., Cloud Dynamics, 1993. (Academic Press: San Diego).
  • Kahn, B.H., Teixeira, J., Fetzer, E.J., Gettelman, A., Hristova-Veleva, S.M., Huang, X., Kochanski, A.K., Khler, M., Krueger, S.K., Wood, R. and Zhao, M., Temperature and water vapor variance scaling in global models: comparisons to satellite and aircraft data. J. Atmos. Sci. 2011, 68, 2156–2168. doi: 10.1175/2011JAS3737.1
  • Kahn, B.H. and Teixeira, J., A global climatology of temperature and water vapor variance scaling from the atmospheric infrared sounder. J. Climate 2009, 22, 5558–5576. doi: 10.1175/2009JCLI2934.1
  • Keeler, J.M., Jewett, B.F., Rauber, R.M., McFarquhar, G.M., Rasmussen, R.M., Xue, L., Liu, C. and Thompson, G., Dynamics of cloud-top generating cells in winter cyclones. Part I: idealized simulations in the context of field observations. J. Atmos. Sci. 2016a, 73, 1507–1527. doi: 10.1175/JAS-D-15-0126.1
  • Keeler, J.M., Jewett, B.F., Rauber, R.M., McFarquhar, G.M., Rasmussen, R.M., Xue, L., Liu, C. and Thompson, G., Dynamics of cloud-top generating cells in winter cyclones. Part II: radiative and instability forcing. J. Atmos. Sci. 2016b, 73, 1529–1553. doi: 10.1175/JAS-D-15-0127.1
  • Keeler, J.M., Rauber, R.M., Jewett, B.F., McFarquhar, G.M., Rasmussen, R.M., Xue, L., Liu, C. and Thompson, G., Dynamics of cloud-top generating cells in winter cyclones. Part III: shear and convective organization. J. Atmos. Sci. 2017, 74, 2879–2897. doi: 10.1175/JAS-D-16-0314.1
  • Klein, R. and Majda, A., Systematic multiscale models for deep convection on mesoscales. Theor. Comp. Fluid Dyn. 2006, 20, 525–551. doi: 10.1007/s00162-006-0027-9
  • Kraichnan, R.H., Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417. doi: 10.1063/1.1762301
  • Kuo, H.l., Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor. 1949, 6, 105–122. doi: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
  • Lambaerts, J., Lapeyre, G. and Zeitlin, V., Moist versus dry baroclinic instability in a simplified two-Layer atmospheric model with condensation and latent heat release. J. Atmos. Sci. 2012, 69, 1405–1426. doi: 10.1175/JAS-D-11-0205.1
  • Lapeyre, G. and Held, I.M., The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci. 2004, 61, 1693–1710. doi: 10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2
  • Larichev, V.D. and Held, I.M., Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 1995, 25, 2285–2297. doi: 10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
  • Majda, A.J., Xing, Y. and Mohammadian, M., Moist multi-scale models for the hurricane embryo. J. Fluid Mech. 2010, 657, 478–501. doi: 10.1017/S0022112010001515
  • Mak, M., On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci. 1982, 39, 2028–2037. doi: 10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2
  • Maltrud, M.E. and Vallis, G.K., Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 1991, 228, 321.
  • Mellado, J.P., Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech. 2017, 49, 145–169. doi: 10.1146/annurev-fluid-010816-060231
  • Monteiro, J.M. and Sukhatme, J., Quasi-geostrophic dynamics in the presence of moisture gradients. Q.J.R. Meteorol. Soc. 2015, 142, 187–195. doi: 10.1002/qj.2644
  • Morrison, H. and Grabowski, W.W., Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci. 2008, 65, 792–812. doi: 10.1175/2007JAS2374.1
  • Nastrom, G.D., Jasperson, W.H. and Gage, K.S., Horizontal spectra of atmospheric tracers measured during the Global Atmospheric Sampling Program. J. Geophys. Res. 1986, 91, 13201. doi: 10.1029/JD091iD12p13201
  • Neelin, J.D. and Yu, J.Y., Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part 1: analytical theory. J. Atmos. Sci. 1994, 51, 1876–1894. doi: 10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2
  • Pedlosky, J., Geophysical Fluid Dynamics, 1979 (Springer: US).
  • Phillips, N.A., Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 1954, 6, 274–286. doi: 10.3402/tellusa.v6i3.8734
  • Pressel, K.G. and Collins, W.D., First-order structure function analysis of statistical scale invariance in the AIRS-observed water vapor field. J. Climate 2012, 25, 5538–5555. doi: 10.1175/JCLI-D-11-00374.1
  • Qi, D. and Majda, A.J., Low-dimensional reduced-order models for statistical response and uncertainty quantification: two-layer baroclinic turbulence. J. Atmos. Sci. 2016, 73, 4609–4639. doi: 10.1175/JAS-D-16-0192.1
  • Rauber, R.M., Ellis, S.M., Vivekanandan, J., Stith, J., Lee, W.C., McFarquhar, G.M., Jewett, B.F. and Janiszeski, A., Finescale structure of a snowstorm over the northeastern United States: a first look at high-resolution HIAPER cloud radar observations. Bull. Amer. Meteor. Soc. 2017, 98, 253–269. doi: 10.1175/BAMS-D-15-00180.1
  • Rhines, P.B., Geostrophic turbulence. Annu. Rev. Fluid Mech. 1979, 11, 401–441. doi: 10.1146/annurev.fl.11.010179.002153
  • Rogers, R. and Yau, M., A Short Course in Cloud Physics, 1989 (Butterworth–Heinemann: Burlington).
  • Salmon, R., Baroclinic instability and geostrophic turbulence. Geophysical & Astrophysical Fluid Dynamics 1980, 15, 167–211. doi: 10.1080/03091928008241178
  • Salmon, R., Lectures on Geophysical Fluid Dynamics, 1998 (Oxford University Press: New York).
  • Schemann, V., Stevens, B., Grtzun, V. and Quaas, J., Scale dependency of total water variance and its implication for cloud parameterizations. J. Atmos. Sci. 2013, 70, 3615–3630. doi: 10.1175/JAS-D-13-09.1
  • Seitter, K.L. and Kuo, H.L., The dynamical structure of squall-line type thunderstorms.. J. Atmos. Sci. 1983, 40, 2831–2854. doi: 10.1175/1520-0469(1983)040<2831:TDSOSL>2.0.CO;2
  • Smith, K.S. and Vallis, G.K., The scales and equilibration of midocean eddies: freely evolving flow. J. Phys. Oceanogr. 2001, 31, 554–571. doi: 10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2
  • Smith, L.M. and Stechmann, S.N., Precipitating quasi-geostrophic equations and potential vorticity inversion with phase changes. J. Atmos. Sci. 2017, 74, 3285–3303. doi: 10.1175/JAS-D-17-0023.1
  • Spyksma, K. and Bartello, P., Small-scale moist turbulence in numerically generated convective clouds. J. Atmos. Sci. 2008, 65, 1967–1978. doi: 10.1175/2007JAS2511.1
  • Sukhatme, J., Majda, A.J. and Smith, L.M., Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids 2012, 24, 036602. doi: 10.1063/1.3694805
  • Thorpe, A.J. and Emanuel, K.A., Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci. 1985, 42, 1809–1824. doi: 10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2
  • Vallis, G.K., Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, 2006 (Cambridge University Press: New York).
  • Wetzel, A.N., Smith, L.M. and Stechmann, S.N., Moisture transport due to baroclinic waves: linear analysis of precipitating quasi-geostrophic dynamics. Math. Clim. Weather Forecast. 2017, 3, 28–50.
  • Wetzel, A.N., Smith, L.M. and Stechmann, S.N., Discontinuous fronts as exact solutions to precipitating quasi-geostrophic equations. SIAM J. Appl. Math. 2019a, 79, 1341–1366. doi: 10.1137/18M119478X
  • Wetzel, A.N., Smith, L.M., Stechmann, S.N. and Martin, J.E. Balanced and unbalanced components of moist atmospheric flows with phase changes. Chin. Ann. Math. B, 2019b, p. in press.
  • Whitaker, J.S. and Davis, C.A., Cyclogenesis in a saturated environment. J. Atmos. Sci. 1994, 51, 889–908. doi: 10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2
  • Zhang, F., Bei, N., Rotunno, R., Snyder, C. and Epifanio, C.C., Mesoscale predictability of moist baroclinic waves: convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci. 2007, 64, 3579–3594. doi: 10.1175/JAS4028.1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.