133
Views
3
CrossRef citations to date
0
Altmetric
Articles

Coalescence of lenticular anticyclones in a linearly stratified rotating fluid

, , &
Pages 504-523 | Received 29 Nov 2019, Accepted 20 Feb 2020, Published online: 18 Mar 2020

References

  • Abbott, B.P., and LIGO Scientific Collaboration and Virgo Collaboration, Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102.
  • Aubert, O., Le Bars, M., Le Gal, P. and Marcus, P., The universal aspect ratio of vortices in rotating stratified flows: experiments and observations. J. Fluid Mech. 2012, 706, 34–45. doi: 10.1017/jfm.2012.176
  • Barbosa, A., Ana, C., Peliz, Á. and Carton, X., A census of meddies in a long-term high-resolution simulation. Prog. Oceanogr. 2013, 116, 80–94. doi: 10.1016/j.pocean.2013.06.016
  • Billant, P., Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations.. J. Fluid Mech. 2010, 660, 354–395. doi: 10.1017/S0022112010002818
  • Cariteau, B. (2005). Etude de la stabilité et de l'interaction de cyclones intenses en fluide stratifié. Ph.D. Thesis, Université Joseph Fourier (Grenoble).
  • Carton, X., Chérubin, L., Paillet, J., Morel, Y., Serpette, A. and Le Cann, B., Meddy coupling with a deep cyclone in the Gulf of Cadiz. J. Mar. Syst. 2002, 32, 13–42. doi: 10.1016/S0924-7963(02)00028-3
  • Carton, X., Daniault, N., Alves, J., Cherubin, L. and Ambar, I., Meddy dynamics and interaction with neighboring eddies southwest of Portugal: observations and modeling. J. Geophys. Res. Ocean 2010, 115, article number C6. doi: 10.1029/2009JC005646
  • Charney, J.G., Geostrophic Turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. doi: 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
  • Ciani, D., Carton, X. and Verron, J., On the merger of subsurface isolated vortices. Geophys. Astrophys. Fluid Dyn. 2016, 110, 23–49. doi: 10.1080/03091929.2015.1135430
  • Cushman-Roisin, B., On the role of filamentation in the merging of anticyclonic lenses. J. Phys. Oceanogr. 1989, 19, 253–258. doi: 10.1175/1520-0485(1989)019<0253:OTROFI>2.0.CO;2
  • De la Rosa Zambrano, H.M., Cros, A., Cruz Gómez, R.C., Le Bars, M. and Le Gal, P., A laboratory study of floating lenticular anticyclones. Eur. J. Mech. - B/Fluids 2017, 61, 1–8. doi: 10.1016/j.euromechflu.2016.09.023
  • Dritschel, D.G., Vortex merger in rotating stratified flows. J. Fluid Mech. 2002, 455, 83–101. doi: 10.1017/S0022112001007364
  • Facchini, G. and Le Bars, M., On the lifetime of a pancake anticyclone in a rotating stratified flow. J. Fluid Mech. 2016, 804, 688–711. doi: 10.1017/jfm.2016.549
  • Griffiths, R.W. and Hopfinger, E.J., Coalescing of geostrophic vortices. J. Fluid Mech. 1987, 178, 73–97. doi: 10.1017/S0022112087001125
  • Hassanzadeh, P., Marcus, P.S. and Le Gal, P., The universal aspect ratio of vortices in rotating stratified flows: theory and simulation. J. Fluid Mech. 2012, 706, 46–57. doi: 10.1017/jfm.2012.180
  • Hopfinger, E.J. and van Heijst, G.J.F., Vortices in rotating fluids. Ann. Rev. Fluid Mech. 1993, 25, 241–289. doi: 10.1146/annurev.fl.25.010193.001325
  • Kraichnan, R.H., Inertial ranges in two dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423. doi: 10.1063/1.1762301
  • Lacaze, L., Le Gal, P. and Le Dizès, S., Elliptical instability in a rotating spheroid. J. Fluid Mech. 2004, 505, 1–22. doi: 10.1017/S0022112004008328
  • Leweke, T., Le Dizès, S. and Williamson, C.H.K., Dynamics and instabilities of vortex pairs. Ann. Rev. Fluid Mech. 2016, 48, 507–541. doi: 10.1146/annurev-fluid-122414-034558
  • L'Hégaret, P., Carton, X., Ambar, I., Ménesguen, C., Hua, B.L., Chérubin, L., Aguiar, A., Cann, B., Daniault, N. and Serra, N., Evidence of Mediterranean water dipole collision in the Gulf of Cadiz. J. Geophys. Res. Ocean 2014, 119, 5337–5359. doi: 10.1002/2014JC009972
  • Melander, M.V., McWilliams, J.C. and Zabusky, N.J., Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 1987, 178, 137–159. doi: 10.1017/S0022112087001150
  • Melander, M.V., Zabusky, N.J. and McWilliams, J.C., Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 1988, 195, 303–340. doi: 10.1017/S0022112088002435
  • Meunier, P., Le Dizès, S. and Leweke, T., Physics of vortex merging. C. R. Phys. 2005, 6, 431–450. doi: 10.1016/j.crhy.2005.06.003
  • Nielsen, A.H., He, X., Rasmussen, J.J. and Bohr, T., Vortex merging and spectral cascade in two-dimensional flows. Phys. Fluids 1996, 8, 2263–2265. doi: 10.1063/1.869027
  • Oster, G., Density gradients. Sci. Am. 1965, 213, 70–79. doi: 10.1038/scientificamerican0865-70
  • Otheguy, P., Chomaz, J.M., Augier, P., Kimura, Y. and Billant, P., Pairing of two vertical columnar vortices in a stratified fluid. Eur. J. Mech. - B/Fluids 2015, 49, 413–425. doi: 10.1016/j.euromechflu.2014.05.007
  • Polvani, L.M., Zabusky, N.J. and Flierl, G.R., Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-states and merger. J. Fluid Mech. 1989, 205, 215–242. doi: 10.1017/S0022112089002016
  • Reinaud, J.N. and Dritschel, D.G., The merger of geophysical vortices at finite Rossby and Froude number. J. Fluid Mech. 2018, 848, 388–410. doi: 10.1017/jfm.2018.367
  • Rodda, C., Borcia, I.D., Le Gal, P., Vincze, M. and Baroclinic, U. H., Kelvin and inertia-gravity waves in the barostrat instability experiment. Geophys. Astrophys. Fluid Dyn. 2018, 112, 175–206. doi: 10.1080/03091929.2018.1461858
  • Rodríguez-Marroyo, R., Viúdez, A. and Ruiz, S., Vortex merger in oceanic tripoles. J. Phys. Oceano. 2011, 41, 1239–1251. doi: 10.1175/2011JPO4582.1
  • Sanchez-Lavega, A., Orton, G.S., Morales, R., Lecacheux, J., Colas, F., Fisher, B., Fukumura-Sawada, P., Golisch, W., Griep, D., Kaminski, C., Baines, K., Rages, K. and West, R., The merger of two giant anticyclones in the atmosphere of Jupiter. Icarus 2001, 149, 491–495. doi: 10.1006/icar.2000.6548
  • Schultz Tokos, K.L., Hinrichsen, H.H. and Zenk, W., Merging and migration of two meddies. J. Phys. Oceano. 1994, 24, 2129–2141. doi: 10.1175/1520-0485(1994)024<2129:MAMOTM>2.0.CO;2
  • Sugimoto, N., Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system. Phys. Fluids 2015, 27, 121701. doi: 10.1063/1.4936869
  • Sugimoto, N., Ishioka, K., Kobayashi, H. and Shimomura, Y., Cyclone-anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water. J. Fluid Mech. 2015, 772, 80–106. doi: 10.1017/jfm.2015.209
  • Sugimoto, N. and Plougonven, R., Generation and backreaction of spontaneously emitted inertia-gravity waves. Geophys. Res. Lett. 2016, 43, 3519–3525. doi: 10.1002/2016GL068219
  • Thielicke, W. and Stamhuis, E., PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Soft. 2014, 2, e30.
  • Valcke, S. and Verron, J., Interactions of baroclinic isolated vortices: the dominant effect of shielding. J. Phys. Oceano. 1997, 27, 524–541. doi: 10.1175/1520-0485(1997)027<0524:IOBIVT>2.0.CO;2
  • Vanneste, J., Balance and spontaneous wave generation in geophysical flows. Ann. Rev. Fluid Mech. 2013, 45, 147–172. doi: 10.1146/annurev-fluid-011212-140730
  • Verron, J., Hopfinger, E.J. and McWilliams, J.C., Sensitivity to initial conditions in the merging of two-layer baroclinic vortices. Phys. Fluids A: Fluid Dyn. 1990, 2, 886–889. doi: 10.1063/1.857647
  • Verron, J. and Valcke, S., Scale-dependent merging of baroclinic vortices. J. Fluid Mech. 1994, 264, 81–106. doi: 10.1017/S0022112094000595
  • Viúdez, A., Spiral patterns of inertia–gravity waves in geophysical flows. J. Fluid Mech. 2006, 562, 73–82. doi: 10.1017/S0022112006001182
  • Von Hardenberg, J., McWilliams, J.C., Provenzale, A., Shchepetkin, A. and Weiss, J.B., Vortex merging in quasi-geostrophic flows. J. Fluid Mech. 2000, 412, 331–353. doi: 10.1017/S0022112000008442
  • Waugh, D.W., The efficiency of symmetric vortex merger. Phys. Fluids A: Fluid Dyn. 1992, 4, 1745–1758. doi: 10.1063/1.858395
  • Zabusky, N.J., Hughes, M.H. and Roberts, K.V., Contour dynamics for the Euler equations in two dimensions. J. Comp. Phys. 1979, 30, 96–106. doi: 10.1016/0021-9991(79)90089-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.