254
Views
7
CrossRef citations to date
0
Altmetric
Articles

Stability and evolution of two opposite-signed quasi-geostrophic shallow-water vortex patches

ORCID Icon & ORCID Icon
Pages 561-587 | Received 10 Jan 2020, Accepted 13 Apr 2020, Published online: 13 May 2020

References

  • Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M., Rogers, J., Eichstdt, G., Momary, T., Ingersoll, A., Filacchione, G., Sindoni, G., Tabataba-Vakili, F., Dinelli, B., Fabiano, F., Bolton, S., Connerney, J., Atreya, S., Lunine, J., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cicchetti, A., Plainaki, C., Olivieri, A., ONeill, M., Turrini, D., Stefani, S., Sordini, R. and Amoroso, M., Cluster of cyclones encircling Jupiter's poles. Nature 2018, 555, 216–219. doi: 10.1038/nature25491
  • Boffetta, G., De Lillo, F. and Musacchio, S., Inverse cascade in Charney-Hasegawa-Mima turbulence. Europhys. Lett. 2002, 59, 687–693. doi: 10.1209/epl/i2002-00180-y
  • Burgess, B. and Dritschel, D., Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow. J. Fluid Mech. 2019, 866, R3. doi: 10.1017/jfm.2019.133
  • Burgess, B., Dritschel, D. and Scott, R., Extended scale invariance in the vortices of freely evolving two-dimensional turbulence. Phys. Rev. Fluids 2017, 2, 114702. doi: 10.1103/PhysRevFluids.2.114702
  • Carton, X.. Oceanic vortices. In Fronts, Waves and Vortices in Geophysical Flows, edited by J.B. Flor, Vol. 805, Chap. 3, pp. 61–108, 2010 (Springer-Verlag: Berlin).
  • Christiansen, J. and Zabusky, N., Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 1973, 61, 219–243. doi: 10.1017/S0022112073000686
  • Deem, G. and Zabusky, N., Vortex waves: Stationary V-states, interactions, recurrence, and breaking. Phys. Rev. Lett. 1978, 40, 859–862. doi: 10.1103/PhysRevLett.40.859
  • Dritschel, D., Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 1988, 77, 240–266. doi: 10.1016/0021-9991(88)90165-9
  • Dritschel, D., Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep. 1989, 10, 77–146. doi: 10.1016/0167-7977(89)90004-X
  • Dritschel, D., A general theory for two-dimensional vortex interactions. J. Fluid Mech. 1995, 293, 269–303. doi: 10.1017/S0022112095001716
  • Dritschel, D., Hmidi, T. and Renault, C., Imperfect bifurcation for the quasi-geostrophic shallow-water equations. Arch. Rational Mech. Anal. 2019, 231, 1853–1915. doi: 10.1007/s00205-018-1312-7
  • Dritschel, D. and Waugh, D., Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A 1992, 4, 1737–1744. doi: 10.1063/1.858394
  • Fedorov, K. and Ginsburg, A., Mushroom-like currents (vortex dipoles): one of the most widespread forms of non-stationary coherent motions in the ocean. Elsevier Oceanogr. Ser. 1989, 50, 1–14. doi: 10.1016/S0422-9894(08)70173-9
  • Fontane, J. and Dritschel, D., The HyperCASL algorithm: A new approach to the numerical simulation of geophysical flows. J. Comput. Phys. 2009, 228, 6411–6425. doi: 10.1016/j.jcp.2009.05.025
  • Jalali, M. and Dritschel, D., The interaction of two asymmetric quasi-geostrophic vortex patches. Geophys. Astrophys. Fluid Dyn. 2018, 112, 375–401. doi: 10.1080/03091929.2018.1532508
  • Larichev, V. and McWilliams, J., Weakly decaying turbulence in an equivalent barotropic fluid. Phys. Fluids A 1991, 3, 938–950. doi: 10.1063/1.857970
  • Luzzatto-Fegiz, P. and Williamson, C., Stability of elliptical vortices from “Imperfect-Velocity-Impulse” diagrams. Theor. Comput. Fluid Dyn. 2010, 24, 181–188. doi: 10.1007/s00162-009-0151-4
  • Luzzatto-Fegiz, P. and Williamson, C., An efficient and general numerical method to compute steady uniform vortices. J. Comput. Phys. 2011, 230, 6495–6511. doi: 10.1016/j.jcp.2011.04.035
  • Makarov, V. and Kizner, Z., Stability and evolution of uniform-vorticity dipoles. J. Fluid Mech. 2011, 672, 307–325. doi: 10.1017/S0022112010006026
  • Makarov, V., Sokolovskiy, M. and Kizner, Z., Doubly symmetric finite-core heton equilibria. J. Fluid Mech. 2012, 708, 397–417. doi: 10.1017/jfm.2012.316
  • McWilliams, J., The emergence of coherent isolated vortices in turbulent flow. J. Fluid Mech. 1984, 146, 21–43. doi: 10.1017/S0022112084001750
  • Mied, R., McWilliams, J. and Lindemann, G., The generation and evolution of mushroom-like vortices. J. Phys. Oceanogr. 1991, 21, 489–510. doi: 10.1175/1520-0485(1991)021<0489:TGAEOM>2.0.CO;2
  • Overman II, E., Steady-state solutions of the Euler equations in two dimensions II. Local analysis of limiting V-states. SIAM J. Appl. Math. 1986, 46, 765–800. doi: 10.1137/0146049
  • Płotka, H. and Dritschel, D., Quasi-geostrophic shallow-water doubly-connected vortex equilibria and their stability. J. Fluid Mech. 2013, 723, 40–68. doi: 10.1017/jfm.2013.104
  • Polvani, L., Two-layer geostrophic vortex dynamics. Part 2. Alignment and two-layer V-states. J. Fluid Mech. 1991, 225, 241–270. doi: 10.1017/S0022112091002045
  • Polvani, L., Zabusky, N. and Flierl, G., Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-states and merger. J. Fluid Mech. 1989, 205, 215–242. doi: 10.1017/S0022112089002016
  • Reinaud, J. and Dritschel, D., Destructive interactions between two counter-rotating quasi-geostrophic vortices. J. Fluid Mech. 2009, 639, 195–211. doi: 10.1017/S0022112009990954
  • Vallis, G., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2017 (Cambridge University Press: Cambridge), doi:10.1017/9781107588417.
  • van Heijst, G. and Clercx, H., Laboratory modeling of geophysical vortices. Ann. Rev. Fluid Mech. 2009, 41, 143–164. doi: 10.1146/annurev.fluid.010908.165207
  • Wu, H., Overman II, E. and Zabusky, N., Steady-state solutions of the Euler equations in two dimensions: Rotating and translating V-states with limiting cases. I. Numerical algorithms and results. J. Comput. Phys. 1984, 53, 42–71. doi: 10.1016/0021-9991(84)90051-2
  • Zabusky, N., Hughes, M. and Roberts, K., Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys. 1979, 30, 96–106. doi: 10.1016/0021-9991(79)90089-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.