1,194
Views
2
CrossRef citations to date
0
Altmetric
Articles

Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field

, & ORCID Icon
Pages 458-498 | Received 20 Jan 2022, Accepted 25 Jul 2022, Published online: 12 Aug 2022

References

  • Aubert, J., Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 2005, 542, 53–67.
  • Aubert, J., Aurnou, J. and Wicht, J., The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 2008, 172, 945–956.
  • Aubert, J., Finlay, C.C. and Fournier, A., Bottom-up control of geomagnetic secular variation by the Earth's inner core. Nature 2013, 502, 219–223.
  • Aubert, J., Gastine, T. and Fournier, A., Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 2017, 813, 558–593.
  • Busse, F.H. and Hood, L.L., Differential rotation driven by convection in a rapidly rotating annulus. Geophys. Astrophys. Fluid Dyn. 1982, 21, 59–74.
  • Cardin, P. and Olson, P., The influence of toroidal magnetic field on thermal convection in the core. Earth Planet. Sci. Lett. 1995, 132, 167–181.
  • Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 1961 (Oxford: Oxford University Press).
  • Cheng, J.S. and Aurnou, J.M., Tests of diffusion-free scaling behaviors in numerical dynamo datasets. Earth Planet. Sci. Lett. 2016, 436, 121–129.
  • Christensen, U.R., Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 2002, 470, 115–133.
  • Christensen, U.R. and Aubert, J., Scaling properties of convection driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 2006, 166, 97–114.
  • Christensen, U.R. and Wicht, J., Numerical dynamo simulations. In Core Dynamics, 2nd ed., edited by P. Olson, Vol. 8 of Treatise on Geophysics, pp. 245–282, 2015 (Elsevier: Amsterdam).
  • Christensen, U., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J. and Zhang, K., A numerical dynamo benchmark. Phys. Earth Planet. Inter. 2001, 128, 25–34.
  • Cooper, R.G., Bushby, P.J. and Guervilly, C., Subcritical dynamos in rapidly rotating planar convection. Phys. Rev. Fluids 2020, 5, 113702.
  • Dormy, E., Strong-field spherical dynamos. J. Fluid Mech. 2016, 789, 500–513.
  • Dormy, E., Cardin, P. and Jault, D., MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 1998, 160, 15–30.
  • Dormy, E., Soward, A.M., Jones, C.A., Jault, D. and Cardin, P., The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 2004, 501, 43–70.
  • Fearn, D.R., Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn. 1979, 14, 103–126.
  • Fearn, D.R., Hydromagnetic waves in a differentially rotating annulus III. The effect of an axial field. Geophys. Astrophys. Fluid Dyn. 1985, 33, 185–197.
  • Fearn, D.R. and Weiglhofer, W.S., Magnetic instabilities in rapidly rotating spherical geometries I. From cylinders to spheres. Geophys. Astrophys. Fluid Dyn. 1991a, 56, 185–197.
  • Fearn, D.R. and Weiglhofer, W.S., Magnetic instabilities in rapidly rotating spherical geometries II. more realistic fields and resistive instabilities. Geophys. Astrophys. Fluid Dyn. 1991b, 60, 275–294.
  • Fearn, D.R. and Weiglhofer, W.S., Magnetic instabilities in rapidly rotating spherical geometries. III. The effect of differential rotation. Geophys. Astrophys. Fluid Dyn. 1992a, 67, 163–184.
  • Fearn, D.R. and Weiglhofer, W.S., Resistive instability and the magnetostrophic approximation. Geophys. Astrophys. Fluid Dyn. 1992b, 63, 111–138.
  • Ferraro, V.C., The non-uniform rotation of the sun and its magnetic field. Mon. Not. R. Astron. Soc. 1937, 97, 458.
  • Finlay, C.C., Waves in the presence of magnetic fields, rotation and convection. In Dynamos, edited by P. Cardin and L.F. Cugliandolo, Vol. 88 of Lecture Notes of the Les Houches Summer School, pp. 403–450, 2008 (Elsevier: Amsterdam).
  • Gillet, N., Brito, D., Jault, D. and Nataf, H.C., Experimental and numerical studies of magnetoconvection in a rapidly rotating spherical shell. J. Fluid Mech. 2007, 580, 123–143.
  • Gillet, N., Jault, D., Canet, E. and Fournier, A., Fast torsional waves and strong magnetic field within the Earth's core. Nature 2010, 465, 74–77.
  • Gómez-Pérez, N. and Wicht, J., Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede. Icarus 2010, 209, 53–62.
  • Jones, C.A., Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 2011, 43, 583–614.
  • Jones, C.A., Thermal and compositional convection in the outer core. In Core Dynamics, 2nd ed., edited by P. Olson, Vol. 8 of Treatise on Geophysics, pp. 115–159, 2015 (Elsevier: Amsterdam).
  • King, E.M. and Buffett, B.A., Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett. 2013, 371, 156–162.
  • Moffatt, K. and Dormy, E., Self-Exciting Fluid Dynamos, 2019 (Cambridge: Cambridge University Press).
  • Olson, P. and Glatzmaier, G.A., Magnetoconvection in a rotating spherical shell: structure of flow in the outer core. Phys. Earth Planet. Inter. 1995, 92, 109–118.
  • Olson, P.L., Christensen, U.R. and Glatzmaier, G.A., Numerical modelling of the geodynamo: mechanisms of field generation and equilibration.. J. Geophys. Res. 1999, 104, 10383–10404.
  • Oruba, L. and Dormy, E., Predictive scaling laws for spherical rotating dynamos. Geophys. J. Int. 2014, 198, 828–847.
  • Proctor, M.R.E., Convection and magnetoconvection in a rapidly rotating sphere. In Lectures on Solar and Planetary Dynamos, Publications of the Newton Institute, edited by M.R.E. Proctor and A.D. Gilbert, pp. 97–115, 1994 (Cambridge University Press: Cambridge).
  • Roberts, P.H., Theory of the geodynamo. In Core Dynamics, 2nd ed., edited by P. Olson, Vol. 8 of Treatise on Geophysics, pp. 57–90, 2015 (Elsevier: Amsterdam).
  • Roberts, P.H. and King, E.M., On the genesis of the Earth's magnetism. Rep. Progr. Phys. 2013, 76, 096801.
  • Sakuraba, A., Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys. Astrophys. Fluid Dyn. 2002, 96, 291–318.
  • Sakuraba, A., A jet-like structure revealed by a numerical simulation of rotating spherical-shell magnetoconvection. J. Fluid Mech. 2007, 573, 89–104.
  • Sakuraba, A. and Kono, M., Effect of a uniform magnetic field on nonlinear magnetoconvection in a rotating fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 2000, 92, 255–287.
  • Sarson, G.R., Jones, C.A., Zhang, K. and Schubert, G., Magnetoconvection dynamos and the magnetic fields of Io and Ganymede. Science 1997, 276, 1106–1108.
  • Sarson, G.R., Jones, C.A. and Zhang, K., Dynamo action in a uniform ambient field. Phys. Earth Planet. Inter. 1999, 111, 47–68.
  • Schaeffer, N., Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 2013, 14, 751–758.
  • Schaeffer, N., Jault, D., Nataf, H.C. and Fournier, A., Turbulent geodynamo simulations: a leap towards Earth's core. Geophys. J. Int. 2017, 211, 1–29.
  • Soderlund, K.M., King, E.M. and Aurnou, J., The influence of magnetic fields in planetary dynamo models. Earth Planet. Sci. Lett. 2012, 333-334, 9–20.
  • Sreenivasan, B. and Gopinath, V., Confinement of rotating convection by a laterally varying magnetic field. J. Fluid Mech. 2017, 822, 590–616.
  • Sreenivasan, B. and Jones, C.A., Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 2011, 688, 5–30.
  • Stellmach, S. and Hansen, U., Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 2004, 70, 056312.
  • Teed, R.J., Jones, C.A. and Tobias, S.M., The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth Planet. Sci. Lett. 2015, 419, 22–31.
  • Yadav, R., Gastine, T., Christensen, U., Wolk, S.J. and Poppenhaeger, K., Approaching a realistic force balance in geodynamo simulations. Proc. Natl. Acad. Sci. 2016a, 113, 12065–12070.
  • Yadav, R.K., Gastine, T., Christensen, U.R., Duarte, L. and Reiners, A., Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. Geophys. J. Int. 2016b, 204, 1120–1133.
  • Zhang, K., Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 1992, 236, 535–556.
  • Zhang, K., Spherical shell rotating convection in the presence of a toroidal magnetic field. Proc. R. Soc. Lond. A 1995, 448, 245–268.
  • Zhang, K. and Fearn, D., How strong is the invisible component of the magnetic field in the Earth's core? Geophys. Res. Lett. 1993, 20, 2083–2086.
  • Zhang, K. and Gubbins, D., Is the geodynamo process intrinsically unstable? Geophys. J. Int. 2000a, 140, F1–F4.
  • Zhang, K. and Gubbins, D., Scale disparities and magnetohydrodynamics in the Earth's core. Phil. Trans. R. Soc. A 2000b, 358, 899–920.