595
Views
0
CrossRef citations to date
0
Altmetric
Articles

Resonant growth of inertial oscillations from lee waves in the deep ocean

, &
Pages 351-373 | Received 12 Sep 2020, Accepted 18 Oct 2022, Published online: 12 Nov 2022

References

  • Alford, M.H., Sustained, full-water-column observations of internal waves and mixing near mendocino escarpment. J. Phys. Oceanogr. 2010, 40, 2643–2660.
  • Alford, M.H., MacKinnon, J.A., Simmons, H.L. and Nash, J.D., Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123.
  • Arbic, B., Fringer, O., Klymak, J., Mayer, F., Trossman, D. and Zhu, P., Connecting process models of topographic wave drag to global eddying general circulation models. Oceanography 2019, 32, 146–155.
  • Auclair, F., Estournel, C., Floor, J.W., Herrmann, M., Nguyen, C. and Marsaleix, P., A non-hydrostatic algorithm for free-surface ocean modelling. Ocean Model. 2011, 36, 49–70.
  • Bretherton, F.P., The propagation of groups of internal gravity waves in a shear flow. Q. J. R. Meteorol. Soc. 1966, 92, 466–480.
  • Bretherton, F.P., Momentum transport by gravity waves. Q. J. R. Meteorol. Soc. 1969, 95, 213–243.
  • Burchard, H. and Rippeth, T.P., Generation of bulk shear spikes in shallow stratified tidal seas. J. Phys. Oceanogr. 2009, 39, 969–985.
  • Chen, S., Polton, J.A., Hu, J. and Xing, J., Thermocline bulk shear analysis in the northern North Sea. Ocean Dyn. 2016, 66, 499–508.
  • Chow, C.C., Henderson, D. and Segur, H., A generalized stability criterion for resonant triad interactions. J. Fluid Mech. 1996, 319, 67–76.
  • Danioux, E., Klein, P., Hecht, M.W., Komori, N., Roullet, G. and Le Gentil, S., Emergence of wind-driven near-inertial waves in the deep ocean triggered by small-scale eddy vorticity structures. J. Phys. Oceanogr. 2011, 41, 1297–1307.
  • Gerkema, T., Staquet, C. and Bouruet-Aubertot, P., Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 2006, 33, L08604.
  • Gill, A., Atmosphere-Ocean Dynamics, 1982 (Academic Press, London).
  • Hasselmann, K., A criterion for nonlinear wave stability. J. Fluid Mech. 1967, 30, 737–739.
  • Koudella, C. and Staquet, C., Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 2006, 548, 165–196.
  • Labreuche, P., Ondes de relief dans l'océan profond: mélange diapycnal et interactions avec les oscillations inertielles. Ph.D. Thesis, Université Joseph Fourier, 2015. Available online at: https://tel.archives-ouvertes.fr/tel-01684248.
  • Leaman, K. and Sanford, T., Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res. 1975, 80, 1975–1978.
  • McIntyre, M.E. and Norton, W.A., Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech. 1990, 212, 403–435.
  • Munk, W. and Wunsch, C., Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. I 1998, 45, 1977–2010.
  • Naveira Garabato, A.C., Polzin, K.L., King, B.A., Heywood, K.J. and Visbeck, M., Widespread intense turbulent mixing in the Southern Ocean. Science 2004, 303, 210–213.
  • Nikurashin, M. and Ferrari, R., Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-Scale topography: I. Theory. J. Phys. Oceanogr. 2010a, 40, 1055–1074.
  • Nikurashin, M. and Ferrari, R., Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: II. Application to the Southern Ocean. J. Phys. Oceanogr. 2010b, 40, 2025–2042.
  • Nikurashin, M. and Ferrari, R., Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 2011, 38, L08610.
  • Nikurashin, M. and Legg, S., A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr. 2011, 41, 378–395.
  • Olbers, D. and Eden, C., A closure for internal wave – mean flow interaction. Part I: energy conversion. J. Phys. Oceanogr. 2017, 47, 1389–1401.
  • Phillips, O., Theoretical and experimental studies of gravity wave interactions. Proc. R. Soc. A: Math 1967, 299, 104–119.
  • Polzin, K. and Firing, E., Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int. WOCE Newslett. 1997, 29, 39–42.
  • Richet, O., Chomaz, J.M. and Muller, C., Internal tide dissipation at topography: triadic resonant instability equatorward and evanescent waves poleward of the critical latitude. J. Geophys. Res. Oceans 2018, 123, 6136–6155.
  • Sheen, K., Brearley, J., Naveira Garabato, A., Smeed, D., Waterman, S., Ledwell, J., Meredith, M., L. St Laurent, Thurnherr, A., Toole, J. and Watson, A., Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: results from the diapycnal and isopycnal mixing experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans 2013, 118, 2774–2792.
  • Stein, W., Sage Mathematics Software (Version 4.7.1), The Sage Development Team, 2012. Available online at: https://www.sagemath.org.
  • Waterhouse, A.F., MacKinnon, J.A., Nash, J.D., Alford, M.H., Kunze, E., Simmons, H.L., Polzin, K.L., Sun, O.M., Pinkel, R., Talley, L.D., Whalen, C.B., Huussen, T.N., Carter, G.S., Fer, I., Waterman, S., Naveira Garabato, A.C., Sanford, T.B. and Lee, C.M., Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 2014, 44, 1854–1872.
  • Waterman, S., Polzin, K.L., Naveira Garabato, A.C., Sheen, K.L. and Forryan, A., Suppression of internal wave breaking in the antarctic circumpolar current near topography. J. Phys. Oceanogr. 2014, 44, 1466–1492.
  • Wright, C.J., Scott, R.B., Ailliot, P. and Furnival, D., Lee wave generation rates in the deep ocean. Geophys. Res. Lett. 2014, 41, 2434–2440.
  • Zemskova, V.E. and Grisouard, N., Near-inertial dissipation due to stratified flow over abyssal topography. J. Phys. Oceanogr. 2021, 51, 2483–2504.