1,559
Views
16
CrossRef citations to date
0
Altmetric
Research Article

A multi-institutional study of inquiry-based lab activities using the Augmented Reality Sandbox: impacts on undergraduate student learning

, ORCID Icon, , , , , , & show all
Pages 85-107 | Received 09 May 2019, Accepted 23 Sep 2019, Published online: 25 Nov 2019

References

  • Aghajan, Z. M., Acharya, L., Moore, J. J., Cushman, J. D., Vuong, C., & Mehta, M. R. (2015). Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nature Neuroscience, 18(1), 121–128.
  • Atit, K., Weisberg, S. M., Newcombe, N. S., & Shipley, T. F. (2016). Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 1(2), 1–18.
  • Baker, R. M., & Dwyer, F. (2005). Effect of instructional strategies and individual differences: A meta-analytic assessment. International Journal of Instructional Media, 32(1), 69–84.
  • Bopegedera, A. M. R. P. (2011). Putting the laboratory at the center of teaching chemistry. Journal of Chemical Education, 88(4), 443–448.
  • Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in the undergraduate laboratory. Journal of College Science Teaching, 38(1), 52–58.
  • Carbonell Carrera, C., Avarvarei, B. V., Chelariu, E. L., Draghia, L., & Avarvarei, S. C. (2017). Map-reading skill development with 3D technologies. Journal of Geography, 116(5), 197–205.
  • Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Landscape interpretation with augmented reality and maps to improve spatial orientation skill. Journal of Geography in Higher Education, 41(1), 119–133.
  • Carbonell Carrera, C., Saorín, J. L., & Hess Medler, S. (2018). Pokémon GO and improvement in spatial orientation skills. Journal of Geography, 117(6), 245–253.
  • Carroll, J. B. (1992). Cognitive abilities: The state of the art. Psychological Science, 3(5), 266–271.
  • Castner, H. W., & Wheate, R. (1979). Re-assessing the role played by shaded relief in topographic scale maps. The Cartographic Journal, 16(2), 77–85.
  • Chang, K. T., Antes, J., & Lenzen, T. (1985). The effect of experience on reading topographic relief information: Analyses of performance and eye movements. The Cartographic Journal, 22(2), 88–94.
  • Chen, C., & Wang, C. H. (2015). Employing augmented-reality-embedded instruction to disperse the imparities of individual differences in earth science learning. Journal of Science Education and Technology, 24(6), 835–847.
  • Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A review of using Augmented Reality in education from 2011 to 2016. In E. Popescu, Kinshuk, M. K. Khribi, R. Huang, M. Jemni, N-S. Chen, and D. G. Sampson. (Eds.), Innovations in smart learning. Lecture notes in educational technology (pp. 13–18). Singapore: Springer.
  • Cheng, K., & Tsai, C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462.
  • Chiou, Y. M. (2019, March). Multi-party mixed reality interaction for earth sciences education. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 719–722). New York, NY: ACM.
  • Clark, D., Reynolds, S., Lemanowski, V., Stiles, T., Yasar, S., Proctor, S., … Corkins, J. (2008). University students’ conceptualization and interpretation of topographic maps. International Journal of Science Education, 30(3), 377–408.
  • Crampton, J. W. (1999). Integrating the web and the geography curriculum: The Bosnian virtual fieldtrip. Journal of Geography, 98(4), 155–168.
  • Davis, M. (2017). Ingress in Geography: Portals to academic success? Journal of Geography, 116(2), 89–97.
  • Dittmer, J. (2010). Immersive virtual worlds in university-level human geography courses. International Research in Geographical and Environmental Education, 19(2), 139–154.
  • Dolphin, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education, 67(2), 1–17.
  • Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7–22.
  • Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3–4), 391–450.
  • Eley, M. G. (1988). Determining the shapes of landsurfaces from topographical maps. Ergonomics, 31(3), 355–376.
  • Eley, M. G. (1993). The differential susceptibility of topographic map interpretation to influence from training. Applied Cognitive Psychology, 7(1), 23–42.
  • Eynard, J. D., & Jenny, B. (2016). Illuminated and shadowed contour lines: Improving algorithms and evaluating effectiveness. International Journal of Geographical Information Science, 30(10), 1923–1943.
  • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell‐Horn‐Carroll (CHC) cognitive abilities and mathematics achievement across the school‐age years. Psychology in the Schools, 40(2), 155–171.
  • Foster, A. L. (2007). Teaching geography in second life. Chronicle of Higher Education, 54(10), 36.
  • Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 1–13.
  • Gazcón, N. F., Nagel, J. M. T., Bjerg, E. A., & Castro, S. M. (2018). Fieldwork in Geosciences assisted by ARGeo: A mobile Augmented Reality system. Computers & Geosciences, 121, 30–38.
  • Gilhooly, K. J., Wood, M., Kinnear, P. R., & Green, C. (1988). Skill in map reading and memory for maps. The Quarterly Journal of Experimental Psychology Section A, 40(1), 87–107.
  • Giorgis, S. (2015). Google earth mapping exercises for structural geology students – An effective intervention for improving penetrative visualization ability. Journal of Geological Education, 63(2), 140–146.
  • Giorgis, S., Mahlen, N., & Anne., K. (2017). Instructor-led approach to integrating an Augmented Reality Sandbox into a large-enrollment introductory geoscience course for nonmajors produces no gains. Journal of Geoscience Education., 65(3), 286–291.
  • Grissom, A. N., Czajka, C. D., & McConnell, D. A. (2015). Revisions of physical geology laboratory courses to increase the level of inquiry: Implications for teaching and learning. Journal of Geoscience Education, 63(4), 285–296.
  • Guay, R. B. (1976). Purdue spatial visualization test. West Lafayette, IN: Purdue Research Foundation.
  • Gunzelmann, G., & Anderson, J. R. (2002). Strategic differences in the coordination of different views of space. In W. D. Gray & C. D. Schunn (Eds.), Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society (pp. 387–392). Mahwah, NJ: Erlbaum.
  • Hegarty, M., Keehner, M., Khooshabeh, P., & Montello, D. R. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19(1), 61–70.
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191.
  • Hsu, H., Tsai, B., & Chen, C. (2018). Teaching topographic map skills and geomorphology concepts with Google Earth in a one-computer classroom. Journal of Geography, 117(1), 29–39.
  • Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392–404.
  • Ishikawa, T., & Kastens, K. A. (2005). Why some students have trouble with maps and other spatial representations. Journal of Geoscience Education, 53(2), 184–197.
  • Jackson, D., Kaveh, H., Victoria, J., Walker, A., & Bursztyn, N. (2019). Integrating an Augmented Reality Sandbox challenge activity into a large-enrollment introductory geoscience lab for nonmajors produces no learning gains. Journal of Geoscience Education, 67(3), 1–12.
  • Jenkins, H. S., Gant, R., & Hopkins, D. (2014, December). Shifting sands and turning tides: Using 3D visualization technology to shape the environment for undergraduate students. Paper presented at the American Geophysical Union Conference, San Francisco, CA.
  • Johnson, N. D., Lang, N. P., & Zophy, K. T. (2011). Overcoming assessment problems in Google Earth-based assignments. Journal of Geoscience Education, 59(3), 99–105.
  • Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during instruction. Journal of Educational Psychology, 96(3), 558–568.
  • Kempf, R. P., & Poock, G. K. (1969). Some effects of layer tinting of maps. Perceptual and Motor Skills, 29(1), 279–281.
  • Kinnear, P. R., & Wood, M. (1987). Memory for topographic contour maps. British Journal of Psychology, 78(3), 395–402.
  • Kreylos, O., Kellogg, L. H., Reed, S., Hsi, S., Yikilmaz, M. B., Schladow, G., … Chan, L. (2016, December). The AR Sandbox: Augmented Reality in geoscience education. Paper presented at the American Geophysical Union Conference, San Francisco, CA.
  • Kusnick, J. (2001). The STRATegy COLUMN for precollege teachers. Journal of Geoscience Education, 49(3), 314–317.
  • Lisichenko, R. (2015). Issues surrounding the use of virtual reality in geographic education. The Geography Teacher, 12(4), 159–166.
  • Maeda, Y., Yoon, S. Y., Kim-Kang, K., & Imbrie, P. K. (2013). Psychometric properties of the Revised PSVT:R for measuring the first year engineering students’ spatial ability. International Journal of Engineering Education, 29, 763–776.
  • Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers & Education, 57(3), 1893–1906.
  • McConnell, D. A., & van Der Hoeven Kraft, K. J. (2011). Affective domain and student learning in the geosciences. Journal of Geoscience Education, 59(3), 106–110.
  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.
  • McGuigan, F. J. (1957). An investigation of several methods of teaching contour interpretation. Journal of Applied Psychology, 41(1), 53.
  • Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environmental: A ten year review of empirical research (1999-2009). Computers & Education, 56(3), 769–780.
  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.
  • Miller, H. R., McNeal, K. S., & Herbert, B. E. (2010). Inquiry in the physical geology classroom: Supporting students’ conceptual model development. Journal of Geography in Higher Education, 34, 595–615.
  • Montello, D. R., Sullivan, C. N., & Pick, H. L. (1994). Recall memory for topographic maps and natural terrain: Effects of experience and task performance. Cartographica: the International Journal for Geographic Information and Geovisualization, 31(3), 18–36.
  • Mosher, S., Bralower, T., Huntoon, J., Lea, P., McConnell, M. K., & White, L. (2014, May). Summary Report for Summit on Future of Undergraduate Geoscience Education, Austin, TX: Author.
  • Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new instructional approach. ACM SIGCSE Bulletin, 36(1), 75–79.
  • Moss, E., & Cervato, C. (2016). Quantifying the level of inquiry in a reformed introductory geology lab course. Journal of Geoscience Education, 64(2), 125–137.
  • National Research Council. (2006). Learning to think spatially. Washington, DC: The National Academies Press.
  • National Research Council (NRC). (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
  • Newcombe, N. S., Weisberg, S. M., Atit, K., Jacovina, M., Ormand, C. J., & Shipley, T. F. (2015). The lay of the land: Sensing and representing topography. Baltic International Yearbook of Cognition, Logic and Communication, 10, 1–57.
  • Ormand, C. J., Shipley, T. F., Tikoff, J., Harwood, C. L., Atit, K., & Boone, A. P. (2014). Evaluating geoscience students’ spatial thinking skills in a multi-institutional classroom study. Journal of Geoscience Education, 62(1), 146–154.
  • Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49(1), 345–375.
  • Phillips, R. J., Lucia, A., & Skelton, N. (1975). Some objective tests of the legibility of relief maps. The Cartographic Journal, 12(1), 39–46.
  • Pick, H. L., Heinrichs, M. R., Montello, D. R., Smith, K., Sullivan, C. N., & Thompson, W. B. (1995). Topographic map reading. In P. A. Hancock, J. M. Flach, J. Caird, & K. J. Vicente (Eds.), Local applications of the ecological approach to human-machine systems (Vol. 2, pp. 255–284). Hillsdale, NJ: Lawrence Erlbaum.
  • Piper, B., Ratti, C., & Ishii, H. (2002, April). Illuminating clay: A 3-D tangible interface for landscape analysis. In D. Wixom (Ed.), Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 355–362). Minneapolis, MN.
  • Potash, L. M., Farrell, J. P., & Jeffrey, T. S. (1978). A technique for assessing map relief legibility. The Cartographic Journal, 15(1), 28–35.
  • Rapp, D. N., Culpepper, S. A., Kirby, K., & Morin, P. (2007). Fostering students’ comprehension of topographic maps. Journal of Geoscience Education, 55(1), 5–16.
  • Reed, S., Hsi, S., Kreylos, O., Yikilmaz, M. B., Kellogg, L. H., Schladow, S. G., … Chan, L. (2016). Augmented reality turns a sandbox into a geoscience lesson. Eos, 97.
  • Richardson, R. T., Sammons, D., & Delparte, D. (2018). Augmented affordances support learning: Comparing the instructional effects of the Augmented Reality Sandbox and conventional maps to teach topographic map skills. Journal of Interactive Learning Research, 29(2), 231–248.
  • Rogoff, B. (1998). Cognition as a collaborative process. In W. Damon (Ed.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (pp. 679–744). Hoboken, NJ, US: John Wiley & Sons Inc.
  • Ross, S. M., Morrison, G. R., & Lowther, D. L. (2010). Educational technology research past and present: Balancing rigor and relevance to impact school learning. Contemporary Educational Technology, 1(1), 17–35.
  • Ryker, K., McNeal, K. S., LaDue, N., Atkins, R. M., & Clark, C. (2016). Augmented Reality Sandboxes: Hacking a hands-on experience. In the Trenches, 6, 1–4.
  • Ryker, K. D., & McConnell, D. A. (2017). Assessing inquiry in physical geology laboratory manuals. Journal of Geoscience Education, 65(1), 35–47.
  • Schofield, N. J., & Kirby, J. R. (1994). Position location on topographical maps: Effects of task factors, training, and strategies. Cognition and Instruction, 12(1), 35–60.
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.
  • Shipley, T. F., Tikoff, B., Ormand, C., & Manduca, C. (2013). Structural geology practice and learning, from the perspective of cognitive science. Journal of Structural Geology, 54, 72–84.
  • Sholl, M. J., & Egeth, H. E. (1982). Cognitive correlates of map-reading ability. Intelligence, 6(2), 215–230.
  • Soltis, N., McNeal, K. S., Atkins, R., & Maudlin, L. (2019). Understanding student engagement while using an Augmented Reality Sandbox. (in review). Journal of Geography in Higher Education.
  • Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29.
  • St. John, K., & McNeal, K. S. (2017). The Strength of Evidence Pyramid: One Approach for Characterizing the Strength of Evidence of Geoscience Education Research (GER) Community Claims. Journal of Geoscience Education, 65(4), 363–372.
  • Stainfield, J., Fisher, P., Ford, B., & Solem, M. (2000). International virtual field trips: A new direction?. Journal of Geography in Higher Education, 24(2), 255–262.
  • Sternberg, R. J. (1988). Applying Cognitive Theory to the Testing and Teaching of Intelligence. Applied Cognitive Psychology, 2, 231–255.
  • Stumpf, R. J., Douglass, J., & Dorn, R. I. (2008). Learning desert geomorphology virtually versus in the field. Journal of Geography in Higher Education, 32(3), 387–399.
  • Taylor, H. A., Renshaw, C. E., & Choi, E. J. (2004). The effect of multiple formats on understanding complex visual displays. Journal of Geoscience Education, 52(2), 115–121.
  • Tekedere, H., & Göker, H. (2016). Examining the effectiveness of augmented reality applications in education: A meta-analysis. International Journal of Environmental & Science Education, 11(16), 9469–9481.
  • Tesolin, A., & Tsinakos, A. (2018). Opening real doors: Strategies for using mobile augmented reality to create inclusive distance education for learners with different-abilities. In S. Yu, M. Ally, and A. Tsinakos (Eds.), Mobile and Ubiquitous Learning: An International Handbook (pp. 59–80). Singapore: Springer.
  • Thorndyke, P., & Stasz, C. (1980). Individual differences in procedures for knowledge acquisition from maps. Cognitive Psychology, 12(1), 137–175.
  • Titus, S., & Horsman, E. (2009). Characterizing and Improving Spatial Visualization Skills. Journal of Geoscience Education, 57(4), 242–254.
  • Turan, Z., Meral, E., & Sahin, I. F. (2018). The impact of mobile augmented reality in geography education: Achievements, cognitive loads and views of university students. Journal of Geography in Higher Education, 42(3), 427–441.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.
  • Vygotsky, L. (1978a). Interaction between learning and development. Readings on the Development of Children, 23(3), 34–41.
  • Vygotsky, L. (1978b). Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Wilkening, J., & Fabrikant, S. I. (2011). How do decision time and realism affect map-based decision making? In International Conference on Spatial Information Theory (pp. 1–19). Berlin: Springer.
  • Woods, T. L., Reed, S., Hsi, S., Woods, J. A., & Woods, M. R. (2016). Pilot Study Using the Augmented Reality Sandbox to Teach Topographic Maps and Surficial Processes in Introductory Geology Labs. Journal of Geoscience Education, 64(3), 199–214.
  • Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49.
  • Yuen, S. C.-Y., Yaoyuneyong, G., & Johnson, E. (2011). Augmented Reality: An Overview and Five Directions for AR in Education. Journal of Educational Technology Development and Exchange, 4(1), 119–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.