273
Views
18
CrossRef citations to date
0
Altmetric
Articles

Arbuscular mycorrhizal fungi improve mineral nutrition and tolerance of olive tree to Verticillium wilt

ORCID Icon, , , , , , & show all
Pages 673-689 | Received 21 May 2020, Accepted 25 Jun 2020, Published online: 11 Jul 2020

References

  • Abdalla ME, Abdel-Fattah GM. 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza. 10(1):29–35.
  • Abdel-Fattah GM, Shabana YM. 2002. Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root rot pathogen Rhizoctonia solani. J Plant Dis Prot. 109:207–215.
  • Azcón-Aguilar C, Jaizme-Vega MC, Calvet C. 2002. The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Mycorrhizal Technology in Agriculture. Basel: Birkhäuser; p. 187–197.
  • Berg G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 84(1):11–18.
  • Boutaj H, Chakhchar A, Meddich A, Wahbi S, El Alaoui-Talibi Z, Douira A, Filali-Maltouf A, El Modafar C. 2020. Bioprotection of olive tree from Verticillium wilt by autochthonous endomycorrhizal fungi. J Plant Dis Prot. 127(3):349–357.
  • Boutaj H, Meddich A, Wahbi S, Moukhli A, El Alaoui-Talibi Z, Douira A, Filali-Maltouf A, El Modafar C. 2019. Effect of arbuscular mycorrhizal Fungi on Verticillium wilt development of olive trees caused by Verticillium dahliae. Research Journal of Biotechnology. 14:79–88.
  • Brown JD, Lilleland O. 1946. Rapid determination of potassium and sodium in plant material and soil extracts by flame photometry. Proc Amer Soc Hortic Sci. 48:341–346.
  • Bücking H, Liepold E, Ambilwade P. 2012. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci. 4:108–138. pp
  • Cardoso I, Boddington C, Janssen B, Oenema O, Kuyper T. 2006. Differential access to phosphorus pools of an oxisol by mycorrhizal and nonmycorrhizal maize. Commun Soil Sci Plant Anal . 37(11/12):1537–1551.
  • Chandanie WA, Kubota M, Hyakumachi M. 2006. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil. 286(1/2):209–217.
  • Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I. 2013. Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants. Sci Agric (Piracicaba, Braz).). 70(3):185–194.
  • Dag A, Yermiyahu U, Ben-Gal A, Zipori I, Kapulnik Y. 2009. Nursery and post-transplant field response of olive trees to arbuscular mycorrhizal fungi in an arid region. Crop Pasture Sci. 60(5):427–433.
  • Derkowska E, Sas-Paszt L, Sumorok B, Szwonek E, Gluszek S. 2008. The influence of mycorrhization and organic mulches on mycorrhizal frequency in apple and strawberry roots. Journal of Fruit and Ornamental Plant Research. 16:227–242.
  • Druvefors UÄ. 2004. Yeast biocontrol of grain spoilage moulds mode of action of pichia anomala. Department of Microbiology, Swedish University of Agricultural Sciences.
  • Eke P, Chatue Chatue G, Wakam LN, Kouipou RMT, Fokou PVT, Boyom FF. 2016. Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. Phaseoli) in common bean (Phaseolus vulgaris L.). Biol Control. 103:240–250.
  • Estaún V, Camprubí A, Calvet C, Pinochet J, 2003. Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. JASHS. 128(5):767–775.
  • Feddermann N, Finlay R, Boller T, Elfstrand M. 2010. Functional diversity in arbuscular mycorrhiza - the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol . 3(1):1–8.
  • Ganz TR, Kailis SG, Abbott LK. 2002. Mycorrhizal colonization and its effect on growth, phosphorus uptake and tissue phenolic content in the European olive (Olea europaea L.). Adv Hortic Sci. 16:109–116.
  • Garmendia I, Goicoechea N, Aguirreolea J. 2004. Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper. Eur J Plant Pathol. 110:227–238.
  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manage. 117:106–114.
  • Hu JL, Lin XG, Wang JH, Shen WS, Wu S, Peng SP, Mao TT. 2010. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber fusarium wilt in greenhouse soils. Pedosphere. 20(5):586–593.
  • Ismail Y, Hijri M. 2012. Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Funct Plant Biol. 39(3):236–245.
  • Jiménez-Moreno MJ, Moreno-Márquez M del C, Moreno-Alías I, Rapoport H, Fernández-Escobar R. 2018. Interaction between mycorrhization with Glomus intraradices and phosphorus in nursery olive plants. Sci Hortic. 233:249–255.
  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol. 38(6):651–664.
  • Kachkouch W, Touati J, Touhami A, Filali-Maltof A, Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A. 2014. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Olea europea in three regions of Morocco (Tafilalt, Zagora and Taounate). Int J Pure Appl Biosci. 2:178–195.
  • Kachkouch W, Touhami AO, Filali-Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A. 2012. Arbuscular mycorrhizal fungi species associated with rhizosphere of Olea europaea L. in Morocco. J Animal Plant Sci. 15:2275–2287.
  • Kapulnik Y, Tsror L, Zipori I, Hazanovsky M, Wininger S, Dag A. 2010. Effect of AMF application on growth, productivity and susceptibility to Verticillium wilt of olives grown under desert conditions. Symbiosis. 52(2-3):103–111.
  • Karagiannidis N, Bletsos F, Stavropoulos N. 2002. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic . 94(1-2):145–156.
  • Karajeh M, Al-Raddad A. 1999. Effect of VA Mycorrhizal Fungus (Glomus mosseae Gerd & Trappe) on Verticillium dahliae Kleb. of olive. Dirasat Agric Sci. 26:338–341.
  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL. 2002. Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci. 82(3):272–278.
  • Maathuis FJM. 2014. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. J Exp Bot. 65(3):849–858.
  • Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science. 316(5832):1746–1748.
  • Mechri B, Manga AGB, Tekaya M, Attia F, Cheheb H, Meriem F, Ben Braham M, Boujnah D, Hammami M. 2014. Changes in microbial communities and carbohydrate profiles induced by the mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea L.). Appl Soil Ecol. 75:124–133.
  • Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine MC, Kuszala C, Gianinazzi S. 2010. Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol. 9(8):1159–1167.
  • Mwangi MW, Monda EO, Okoth SA, Jefwa JM. 2011. Inoculation of tomato seedlings with trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Braz J Microbiol. 42(2):508–513.
  • Nafady NA, Hassan EA, Abd-Alla MH, Bagy MMK. 2018. Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatal Agric Biotechnol. 16:140–147.
  • Olowe OM, Olawuyi OJ, Sobowale AA, Odebode AC. 2018. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Curr Plant Biol. 15:30–37.
  • Olsen SR, Cole CV, Watanabe FS, Dean L. a. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington United States Department of Agriculture USDA 939. Washington, DC: US Govt. Print. Office. 939:1–19.
  • Pasqualini D, Uhlmann A, Stürmer SL. 2007. Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. For Ecol Manage . 245(1-3):148–155.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–161.
  • Porras-Soriano A, Marcilla-Goldaracena I, Soriano-Martin ML, Porras-Piedra A, Universitaria E, Mancha C, Real C, Soriano-Martín ML. 2006. Development and resistance to Verticillium dahliae of olive plantlets inoculated with mycorrhizal fungi during the nursery period. J Agric Sci. 144(2):151–157.
  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol. 166(13):1350–1359.
  • Querejeta JI, Barea JM, Allen MF, Caravaca F, Roldán A. 2003. Differential response of delta13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia. 135(4):510–515.
  • Sanei SJ, Razavi SE. 2017. Resistance and vegetative growth analysis of some olive cultivars in response to a defoliating pathotype of Verticillium dahliae Kleb. Int J Hortic Sci Technol. 4:239–250.
  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H. 2006. Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza. 16(5):365–370.
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. 2009. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol. 55(7):879–886.
  • Shokri S, Maadi B. 2009. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J of Agronomy. 8(2):79–83.
  • Singh M. 2015. Interactions among arbuscular mycorrhizal fungi, Trichoderma harzianum, Aspergillus niger and biocontrol of wilt of tomato. Arch Phytopathol Plant Protect. 48(3):205–211.
  • Smith SE, Jakobsen I, Grønlund M, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156(3):1050–1057.
  • Smith S, Read D. 2008. Mycorrhizal symbiosis. 3rd ed. London: Academic Press; p. 769.
  • Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol. 62:227–250.
  • Tekaya M, Mechri B, Mbarki N, Cheheb H, Hammami M, Attia F. 2017. Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynt. 55(2):308–316.
  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. Mycorhizes: physiol Génét. 217–220.
  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC. 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity?. Pedobiologia. 53(3):197–201.
  • Wilhelm S. 1955. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology. 45:180–181.
  • Wu Q, Srivastava AK, Zou Y. 2013. Scientia Horticulturae AMF-induced tolerance to drought stress in citrus : A review. Sci Hortic. 164:77–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.