171
Views
4
CrossRef citations to date
0
Altmetric
Article

Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi

ORCID Icon, ORCID Icon & ORCID Icon
Pages 886-902 | Received 07 Aug 2020, Accepted 06 Dec 2020, Published online: 07 Jan 2021

References

  • Abd-Elsalam KA, Aly IN, Abdel-Satar MA, Khalil MS, Verreet JA. 2003. PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African J Biotechnol. 2(4):82–85.
  • Ahmed AMH, Sayed SA, Farghaly FA, Radi AAF. 2016. Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. J Phytopathol Pest Manag. 3(3):24–34.
  • Ahn IP, Kim S, Lee YH. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138(3):1505–1515.
  • Ahn IP, Kim S, Lee YH, Suh SC. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143(2):838–848.
  • Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E. 2016. Plant resistance inducers against pathogens in Solanaceae species — From molecular mechanisms to field application. IJMS. 17(10):1673.
  • Aly Torky Z. 2016. Vitamin B mediated priming of disease resistance and defense responses to tobacco mosaic virus in Capsicum annuum L. plants. J Antivir Antiretrovir. 8(2):35–53.
  • Ardila H. 2013. Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi [doctoral thesis]. Colombia: Universidad Nacional de Colombia.
  • Ardila BH, Higuera BL. 2005. Induccion diferencial de polifenoloxidasa y B-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infeccion por Fusarium oxysporum f.sp. dianthi raza 2. Acta Biol Colomb. 10(2):61–74.
  • Ardila HD, Martínez ST, Higuera BL. 2013. Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiol Plant. 35(4):1233–1245.
  • Ardila HD, Torres AM, Martínez ST, Higuera BL. 2014. Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiol Mol Plant Pathol. 85:42–52.
  • Barros L, Baptista P, Estevinho LM, Ferreira ICFR. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J Agric Food Chem. 55(21):8766–8771.
  • Basallote-Ureba MJ, Vela-Delgado MD, Capote N, Melero-Vara JM, López-Herrera CJ, Prados-Ligero AM, Talavera-Rubia MF. 2016. Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Prot. 89:184–192.
  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I. 2013. Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol. 13(1):31.
  • Boubakri H. 2017. The role of ascorbic acid in plant – Pathogen interactions. In: Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A, editors. Ascorbic acid plant growth, development and stress tolerance. Cham: Springer; p. 255–271.
  • Casati P. 2012. Flavonoids : biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 3:1–15.
  • Chiocchetti A, Bernardo I, Daboussi MJ, Garibaldi A, Gullino ML, Langin T, Migheli Q. 1999. Detection of Fusarium oxysporum f. sp. dianthi in carnation tissue by PCR amplification of transposon insertions. Phytopathology. 89(12):1169–1175.
  • Clematis F, Tedeschini J, Dolci M, Lanzotti V, Cangelosi B. 2011. Phenol composition and susceptibility to Fusarium oxysporum dianthi in carnation. J Life Sci. 5:921–925.
  • Darwesh Hadeer Y, Nour El-Deen A, Fayad Eman M. 2015. In-vitro investigation for improving secondary metabolites in Origanum vulgare plants using tissue culture technique at Taif Governorate, KSA. Res J Pharm, Biol Chem Sci. 6(1117):1117–1122.
  • Galeotti F, Barile E, Lanzotti V, Dolci M, Curir P. 2008. Quantification of major flavonoids in carnation tissues (Dianthus caryophyllus) as a tool for cultivar discrimination. Z Naturforsch C J Biosci. 63(3-4):161–168.
  • Goyer A. 2010. Thiamine in plants : aspects of its metabolism and functions. Phytochemistry. 71(14-15):1615–1624.
  • Gullino ML, Daughtrey ML, Garibaldi A, Elmer WH. 2015. Fusarium wilts of ornamental crops and their management. Crop Prot. 73:45–49.
  • Hamada AM, Fatehi J, Jonsson LMV. 2018. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bull Entomol Res. 108(1):84–92.
  • Hamada AM, Jonsson LV. 2013. Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry. 94:135–141.
  • Hammerschmidt R. 2011. Phytoalexins at the right place and time. Physiol Mol Plant Pathol. 76:3–4.
  • Hegde KT, Narayanaswamy H, Veeraghanti KS, Manu TG. 2017. Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. Int J Chem Stud. 5(6):139–142.
  • Higuera BL. 2001. Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi [doctoral thesis]. Colombia: Universidad Nacional de Colombia.
  • Ibraheem F, Gaffoor I, Chopra S. 2010. Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics. 184(4):915–926.
  • Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C. 2016. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol Control. 101:17–30.
  • Llorens E, García-Agustín P, Lapeña L. 2017. Advances in induced resistance by natural compounds: towards new options for woody crop protection. Sci Agric (Piracicaba, Braz). 74(1):90–100.
  • Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules. 19(10):16240–16265.
  • Mohammadi MA, Zhang Z, Xi Y, Han H, Lan F, Zhang B. 2019. Effects of potassium phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans. Appl Ecol Environ Res. 17(2):4499–4514.
  • Paraschivu M, Simnic-Craiova DS, Timisoara VM, Faculty H, County D. 2013. The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Res J Agric Sci. 45(1):193–201.
  • Pinto KMS, Cordeiro L, de Souza Gomes H, da Silva HF, dos Reis MJ. 2012. Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola: epidemiological, biochemical and economic aspects. Eur J Plant Pathol. 134(4):745–754.
  • Ramos O, Smith M, Fritz AK, Madl RL. 2017. Salicylic acid-mediated synthetic elicitors of systemic acquired resistance administered to wheat plants at jointing stage induced phenolics in mature grains. Crop Sci. 57(6):3122–3128.
  • Romanazzi G, Sanzani SM, Bi Y, Tian S, Gutiérrez Martínez P, Alkan N. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol. 122:82–94.
  • Sathiyabama M, Indhumathi M, Muthukumar S. 2019. Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr Polym. 212:169–177.
  • Schreiber K, Desveaux D. 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol J. 24(3):245–268.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16:144–158.
  • Smith A, Croft M, Moulin M, Webb M. 2007. Plants need their vitamins too. Curr Opin Plant Biol. 10(3):266–275.
  • Soto-Sedano JC, Clavijo-Ortiz MJ, Filgueira-Duarte JJ. 2012. Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f. sp. dianthi. Agron Colomb. 30(2):172–178.
  • Soto-Sedano JC, Filgueira-Duarte JJ. 2012. Evaluation or the reproduction proficiency of carnation (Dianthus caryophyllus L.) hybrids and varieties as search of useful parentals for a breeding program. Rev Fac Ciencias Básicas. 8(2):184–195.
  • Ton J, Van Der Ent S, Van Hulten M, Pozo M, Van Oosten V, van Loon LC, Mauch-Mani B, Turlings TCJ, Pieterse CMJ. 2009. Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC WPRS Bull. 44:3–13. IOBC/wprs Bulletin.
  • Tripathi D, Raikhy G, Kumar D. 2019. Chemical elicitors of systemic acquired resistance — Salicylic acid and its functional analogs. Curr Plant Biol. 17:48–59.
  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D. 2009. Thiamine Confers Enhanced Tolerance to Oxidative stress in Arabidopsis. Plant Physiol. 151(1):421–432.
  • Vimala R, Suriachandraselvan M. 2009. Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. J Biopestic. 2(1):111–114.
  • Vinchesi AC, Rondon SI, Goyer A. 2017. Priming potato with thiamine to control potato virus Y. Am J Potato Res. 94(2):120–128.
  • Wolcan SM, Malbrán I, Mourelos CA, Sisterna MN, González M. d P, Alippi AM, Nico A, Lori GA. 2018. Diseases of carnation. In McGovern R, Elmer WH, editors. Handbook of florists’ crops diseases. Handbook of plant diseases management. Cham, Switzerland: Springer International Publishing; p. 317–378.
  • Yáñez-Juárez MG, López-Orona CA, Ayala-Tafoya F, Partida Ruvalcaba L, Velázquez-Alcaraz T de J, Medina-López R. 2018. Phosphites as alternative for the management of phytopathological problems Los fosfitos como alternativa para el manejo de problemas fitopatológicos. Rev Mex Fitopatol. 36(1):79–94.
  • Yin Y, Bi Y, Li Y, Wang Y, Wang D. 2012. Use of thiamine for controlling Alternaria alternata postharvest rot in Asian pear (Pyrus bretschneideri Rehd. cv. Zaosu). Int J Food Sci Technol. 1:1–8.
  • Yong-Hong GE, Can-Ying LI, Jing-Yi L, Dan-Shi Z. 2017. Effects of thiamine on Trichothecium and Alternaria rots of muskmelon fruit and the possible mechanisms involved. J Integr Agric CAAS. 16(11):2623–2631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.