Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 49, 2014 - Issue 6
593
Views
26
CrossRef citations to date
0
Altmetric
ARTICLES

The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth‐promoting properties of the cultured isolates

, , , , , & show all
Pages 381-390 | Received 17 Dec 2013, Published online: 24 Apr 2014

References

  • Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food. Chem. 2011, 59(7), 2897–2908.
  • Casida, J.E. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food. Chem. 2011, 59(7), 2923–2931.
  • Liu, Z.; Dai, Y.; Huang, G.; Gu, Y.; Ni, J.; Wei, H.; Yuan, S. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest. Manag. Sci. 2011, 67(10), 1245–1252.
  • Phugare, S.S.; Kalyani, D.C.; Gaikwad, Y.B.; Jadhav, J.P. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm Bombyx mori. Chem. Eng. J. 2013, 230, 27–35.
  • Anhalt, J.C.; Moorman, T.B.; Koskinen, W.C. Biodegradation of imidacloprid by an isolated soil microorganism. J. Environ. Sci. Health. Part B. 2007, 42(5), 509–514.
  • Pandey, G.; Dorrian, S.J.; Russell, R.J.; Oakeshott, J.G. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem. Biophys. Res. Commun. 2009, 380(3), 710–714.
  • Dai, Y.‐J.; Yuan, S.; Ge, F.; Chen, T.; Xu, S.‐C.; Ni, J.‐P. Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid. Appl. Microbiol. Biotechnol. 2006, 71(6), 927–934.
  • Dai, Y.‐J.; Ji, W.‐W.; Chen, T.; Zhang, W.‐J.; Liu, Z.‐H.; Ge, F.; Yuan, S. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM‐2. J. Agric. Food. Chem. 2010, 58(4), 2419–2425.
  • Zhang, H.‐J.; Zhou, Q.‐W.; Zhou, G.‐C.; Cao, Y.‐M.; Dai, Y.‐J.; Ji, W.‐W.; Shang, G.‐D.; Yuan, S. Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J. Agric. Food. Chem. 2011, 60(1), 153–159.
  • Zhao, Y.‐J.; Dai, Y.‐J.; Yu, C.‐G.; Luo, J.; Xu, W.‐P.; Ni, J.‐P.; Yuan, S. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC 1. 1788. Biodegradation 2009, 20(6), 761–768.
  • Zhou, G.‐C.; Wang, Y.; Zhai, S.; Ge, F.; Liu, Z.‐H.; Dai, Y.‐J.; Yuan, S.; Hou, J.‐Y. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen‐fixing and plant‐growth‐promoting rhizobacterium Ensifer adhaerens strain TMX‐23. Appl. Microbiol. Biotechnol. 2013, 9, 4065–4074.
  • Yang, H.; Wang, X.; Zheng, J.; Wang, G.; Hong, Q; Li, S.; Li, R.; Jiang, J. Biodegradation of acetamiprid by Pigmentiphaga sp. D‐2 and the degradation pathway. Int. Biodeter. Biodegr. 2013, 85, 95–102.
  • Wang, G.; Yue, W.; Liu, Y.; Li, F.; Xiong, M.; Zhang, H. Biodegradation of the Neonicotinoid Insecticides Acetamiprid by bacterium Pigmentiphaga sp. Strain AAP‐1 Isolated from Soil. Biore sour. Technol. 2013, 138, 359–368.
  • Yao, X.; Min, H.; Lv, Z. Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomed. Environ. Sci. 2006, 19(4), 309–314.
  • Wang, G.; Zhao, Y.; Gao, H.; Yue, W.; Xiong, M.; Li, F.; Zhang, H.; Ge, W. Co‐metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP‐7 isolated from a long‐term acetamiprid‐polluted soil. Bioresour. Technol. 2013, 150, 259–265.
  • Phugare, S.S.; Jadhav, J.P. Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori). In CLEAN. Wiley: Weinheim, 2013.
  • Tang, H.; Li, J.; Hu, H.; Xu, P. A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide. Process. Biochem. 2012, 47(12), 1820–1825.
  • Chen, T.; Dai, Y‐J.; Ding, J‐F.; Yuan, S.; Ni, J‐P. N‐demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 2008, 19(5), 651–658.
  • Wang, J.; Hirai, H.; Kawagishi, H. Biotransformation of acetamiprid by the white‐rot fungus Phanerochaete sordida YK‐624. Appl. Microbiol. Biotechnol. 2012, 93(2), 831–835.
  • Myresiotis, C.K.; Vryzas, Z.; Papadopoulou‐Mourkidou, E. Biodegradation of soil‐applied pesticides by selected strains of plant growth‐promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 2012, 23(2), 297–310.
  • Ahemad, M.; Khan, M.S. Assessment of pesticide‐tolerance and functional diversity of bacterial strains isolated from rhizospheres of different crops. Insight. Microbiol. 2011, 1, 8–19.
  • Kanne, D.B.; Dick, R.A.; Tomizawa, M.; Casida, J.E. Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem. Res. Toxicol. 2005, 18(9), 1479–1484.
  • Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Microbiol. Biotechnol. 1996, 62(2), 316–322.
  • Muyzer, G.; De Waal, E.C.; Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59(3), 695–700.
  • Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57(2), 535–538.
  • Alexander, D.; Zuberer, D. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 1991, 12(1), 39–45.
  • Reeves, M.W.; Pine, L.; Neilands, J.; Balows, A. Absence of siderophore activity in Legionella species grown in iron‐deficient media. J. Bacteriol. 1983, 154(1), 324–329.
  • Mody, B.; Bindra, M.; Modi, V. Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch. Microbiol. 1989, 153(1), 38–42.
  • Schippers, B.; Bakker, A.; Bakker, P.; Van Peer, R. Beneficial and deleterious effects of HCN‐producing pseudomonads on rhizosphere interactions. Plant Soil. 1991, 129(1), 75–83.
  • Sgroy, V.; Cassán, F.; Masciarelli, O.; Del Papa, M.F.; Lagares, A.; Luna, V. Isolation and characterization of endophytic plant growth‐promoting (PGPB) or stress homeostasis‐regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 2009, 85(2), 371–381.
  • Ford, K.A.; Casida, J.E. Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem. Res. Toxicol. 2006, 19(11), 1549–1556.
  • Ford, K.A.; Casida, J.E. Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J. Agric. Food. Chem. 2008, 56(21), 10168–10175.
  • Nauen, R.; Ebbinghaus‐Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 2003, 76(2), 55–69.
  • Karmakar, R.; Bhattacharya, R.; Kulshrestha, G. Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato. J. Agric. Food. Chem. 2009, 57(14), 6369–6374.
  • Karmakar, R.; Singh, S.; Kulshrestha, G. Persistence and transformation of thiamethoxam, a neonicotinoid insecticide, in soil of different agroclimatic zones of India. Bull. Environ. Contam. Toxicol. 2006, 76(3), 400–406.
  • Lessner, D.J.; Johnson, G.R.; Parales, R.E.; Spain, J.C.; Gibson, D.T. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol. 2002, 68(2), 634–641.
  • Wu, J.‐F.; Jiang, C.‐Y.; Wang, B.‐J.; Ma, Y.‐F.; Liu, Z.‐P.; Liu, S.‐J. Novel partial reductive pathway for 4‐chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB‐1. Appl. Environ. Microbiol. 2006, 72(3), 1759–1765.
  • Xie, W.; Meng, Q.‐S.; Wu, Q.‐J.; Wang, S.‐L.; Yang, X.; Yang, N.‐N.; Li, R.‐M.; Jiao, X.‐G.; Pan, H.‐P.; Liu, B.‐M. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS One 2012, 7(4), e35181.
  • Lladó, S.; Jiménez, N.; Viñas, M.; Solanas, A.M. Microbial populations related to PAH biodegradation in an aged biostimulated creosote‐contaminated soil. Biodegradation 2009, 20(5), 593–601.
  • Zrafi‐Nouira, I.; Guermazi, S.; Chouari, R.; Safi, N.M.; Pelletier, E.; Bakhrouf, A.; Saidane‐Mosbahi, D.; Sghir, A. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil. Biodegradation 2009, 20(4), 467–486.
  • Aburto‐Medina, A.; Adetutu, E.M.; Aleer, S.; Weber, J.; Patil, S.S.; Sheppard, P.J.; Ball, A.S.; Juhasz, A.L. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long‐term hydrocarbon‐contaminated soil. Biodegradation 2012, 23(6), 813–822
  • Miguel, MGdCP.; Cardoso, P.G.; Lago, LdA.; Schwan, R.F. Diversity of bacteria present in milk kefir grains using culture‐dependent and culture‐independent methods. Food. Res. Int. 2010, 43(5), 1523–1528.
  • Ford, K.A.; Casida, J.E.; Chandran, D.; Gulevich, A.G.; Okrent, R.A.; Durkin, K.A.; Sarpong, R.; Bunnelle, E.M; Wildermuth, M.C. Neonicotinoid insecticides induce salicylate‐associated plant defense responses. Proc. Natl. Acad. Sci. USA. 2010, 107(41), 17527–17532.
  • Ahemad, M.; Khan, M.S. Effects of insecticides on plant‐growth‐promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic. Biochem. Phys. 2011, 100(1), 51–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.