Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 49, 2014 - Issue 6
96
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

QSPR prediction of chromatographic retention times of pesticides: Partition and fractal indices

&
Pages 400-407 | Received 13 Nov 2013, Published online: 24 Apr 2014

References

  • Wang, X.; Telepchak, M.J. Determination of pesticides in red wine by QuEChERS extraction, rapid mini‐cartridge cleanup and LC–MS–MS detection. LC–GC Eur. 2013, 26. 66–76.
  • De Melo Abreu, S.; Caboni, P.; Cabras, P.; Garau, V.L.; Alves, A. Validation and global uncertainty of a liquid chromatographic with diode array detection method for the screening of azoxy strobin,kresoxim‐methyl,trifloxystrobin,famoxadone,pyraclostrobin and fenamidone in grapes and wine.Anal. Chim. Acta 2006, 291, 573–574.
  • Oliva, J.; Navarro, S.; Barba, A.; Navarro, G. Determination of chlorpyrifos, penconazole, fenarimol, vinclozolin and metalaxyl in grapes, must and wine by on‐line microextraction and gas chromatography. J. Chromatogr., A 1999, 833, 43–51.
  • Jimenez, J.J.; Bernal, J.L.; del Nozal, M.J.; Toribio, L.; Arias, E. Analysis of pesticide residues in wine by solid‐phase extraction and gas chromatography with electron capture and nitrogen‐phosphorus detection. J. Chromatogr., A 2001, 919, 147–156.
  • Wang, J.‐F.; Luan, L.; Wang, Z.‐Q.; Jiang, S.‐R.; Pan, C.‐P. Determination of 19 multi‐residue pesticides in grape wine by gas chromatography‐electron capture detector. Chin. J. Anal. Chem. 2007, 35, 1430–1434.
  • Economou, A.; Botitsi, H.; Antoniou, S.; Tsipi, D. Determination of multi‐class pesticides in wines by solid‐phase extraction and liquid chromatography‐tandem mass spectrometry. J. Chromatogr., A 2009, 1216, 5856–5867.
  • Hu, Y.; Liu, W.M.; Zhou, Y.M.; Guan, Y.F. Determination of organophosphorous pesticide residues in red wine by solid phase microextraction‐gas chromatography. Se Pu 2006, 24, 290–293.
  • Wu, J.; Tragas, C.; Lord, H.; Pawliszyn, J. Analysis of polar pesticides in water and wine samples by automated in‑tube solid‐phase microextraction coupled with high‐performance liquid chromatography–mass spectrometry. J. Chromatogr., A 2002, 976, 357–367.
  • Bolaños, P.P.; Romero‐González, R.; Frenich, A.G.; Vidal, J.L. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra‐high pressure liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr., A 2008, 1208, 16–24.
  • Viñas, P.; Aguinaga, N.; Campillo, N.; Hernández‐Córdoba, M. Comparison of stir bar sorptive extraction and membrane‐assisted solvent extraction for the ultra‐performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J. Chromatogr., A 2008, 1194, 178–183.
  • Anastassiades, M.; Lehotay, S.J.; Stajnbaher D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive‐solid phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431.
  • Lehotay, S.J. QuEChERS sample preparation approach for mass spectrometric analysis of pesticide residues in foods. In Mass Spectrometry in Food Safety; Zweigenbaum, J., Ed.; Humana: Totowa, NJ, 2011; 65–91.
  • Cunha, S.C.; Lehotay, S.J.; Mastovska, K.; Fernandes, J.O.; Beatriz, M.; Oliveira, P.P. Evaluation of the QuEChERS sample preparation approach for the analysis of pesticide residues in olives. J. Sep. Sci. 2007, 30, 620–632.
  • Whelan, M.; Kinsella, B.; Furey, A.; Moloney, M.; Cantwell, H.; Lehotay, S.J.; Danaher, M. Determination of anthelmintic drug residues in milk using ultra high performance liquid chromatography–tandem mass spectrometry with rapid polarity switching. J. Chromatogr. A 2010, 1217, 4612–4622.
  • Torrens, F.; Sánchez‐Marín, J.; Nebot‐Gil, I. Universal model for the calculation of all organic solvent–water partition coefficients. J. Chromatogr. A 1998, 827, 345–358.
  • Torrens, F. Universal organic solvent‐water partition coefficient model. J. Chem. Inf. Comput. Sci. 2000, 40, 236–240.
  • Torrens, F. Calculation of partition coefficient and hydrophobic moment of the secondary structure of lysozyme. J. Chromatogr. A 2001, 908, 215–221.
  • Torrens, F. Free energy of solvation and partition coefficients in methanol–water binary mixtures. Chromatographia 2001, 53, S199–S203.
  • Torrens, F.; Soria, V. Stationary‐mobile phase distribution coefficient for polystyrene standards. Sep. Sci. Technol. 2002, 37, 1653–1665.
  • Torrens, F. Calculation of organic solvent–water partition coefficients of iron–sulfur protein models. Polyhedron 2002, 21, 1357–1361.
  • Torrens, F. Calculation of solvents and co‑solvents of single‐wall carbon nanotubes: Cyclopyranoses. Nanotechnology 2005, 16, S181–S189.
  • Torrens, F.; Castellano, G. (Co‐)solvent selection for single‐wall carbon nanotubes: Best solvents, acids, superacids and guest–host inclusion complexes. Nanoscale 2011, 3, 2494–2510.
  • Torrens, F. A new chemical index inspired by biological plastic evolution. Indian J. Chem., Sect. A 2003, 42, 1258–1263.
  • Torrens, F. A chemical index inspired by biological plastic evolution: Valence‐isoelectronic series of aromatics. J. Chem. Inf. Comput. Sci. 2004, 44, 575–581.
  • Torrens, F.; Castellano, G. QSPR prediction of retention times of phenylurea herbicides by biological plastic evolution. Curr. Drug Saf. 2012, 7, 262–268.
  • Ruíz‐Bustos, A. La Evolución Plástica. Andalucía: Granada, Spain, 1994.
  • Hopfinger, A.J. Polymer‐solvent interactions for homopolypeptides in aqueous solution. Macromolecules 1971, 4, 731–737.
  • Hopfinger, A.J.; Battershell, R.D. Application of SCAP to drug design: 1. Prediction of octanol–water partition coefficients using solvent‐dependent conformational analyses. J. Med. Chem. 1976, 19, 569–573.
  • Gibson, K.D.; Scheraga, H.A. Minimization of polypeptide energy, I. Preliminary structures of bovine pancreatic ribonuclease S‐peptide. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 420–427.
  • Rekker, R.F. The Hydrophobic Fragmental Constant. Elsevier: Amsterdam, 1976.
  • Pascal, P. Program SCAP. Université Henry Poincaré‐Nancy I: Nancy, France, 1991.
  • Torrens, F. Characterizing cavity‐like spaces in active‐site models of zeolites. Comput. Mater. Sci. 2003, 27, 96–101.
  • Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. AM1: A new general purpose quantum mechanical model. J. Am. Chem. Soc. 1985, 107, 3902–3909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.