Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 50, 2015 - Issue 8
195
Views
10
CrossRef citations to date
0
Altmetric
ARTICLES

Metabolic fate of the 14C-labeled herbicide clodinafop-propargyl in a sediment–water system

, , &
Pages 533-543 | Received 02 Dec 2014, Published online: 11 Jun 2015

References

  • Wenger, J.; Niderman, T.; Mathews, C. Acetyl-CoA inhibitors. In Modern Crop Protection Compounds, Second, Revised and Enlarged Edition; Krämer, W., Schirmer, U., Jeschke, P., Witschel, M., Eds.; Taylor & Francis, Germany, 2012, 447–477.
  • Vencill, W.K. (Ed.) Herbicide Handbook, Eighth Edition; Taylor & Francis: Lawrence, KS, USA, 2002.
  • Tomlin, C. (Ed.) The Pesticide Manual, Tenth Edition. Taylor & Francis: Farnham-Cambridge, United Kingdom, 1995.
  • Anonymous. Conclusion regarding the peer review of the pesticide risk assesssment of the active substance clodinafop, finalised 10 August 2005. EFSA Scientific Report 2005, 34, 1–78. Available at: http://www.efsa.europa.eu/de/scdocs/34ar.pdf. (accessed Jun 2013).
  • Kumari, R.; Kumari, B. Persistence of clodinafop-propargyl in soil and wheat crop. Environ. Ecol. 2008, 26, 2149–2151.
  • Guan, W.; Ma, Y.; Zhang, H. Dissipation of clodinafop-propargyl and its metabolite in wheat field ecosystem. Bull. Environ. Contam. Toxicol. 2013, 90, 750–755.
  • Gui, W.J.; Dong, Q.X.; Zhou, S.L.; Wang, X.X.; Liu, S.Y.; Zhu, G.N. Waterborne exposure to clodinafop-propargyl disrupts the posterior and ventral development of zebrafish embryos. Environ. Toxicol. Chem. 2011, 30, 1576–1581.
  • Jaquet, J.; Weitzel, P.; Junge, T.; Schmidt, B. Metabolic fate of the 14C-labeled herbicide clodinafoppropargyl in soil. J. Environ. Sci. Health Part B. 2014, 49, 245–254.
  • Shahsavari, A.A.; Khodaei, K.; Asadian, F.; Ahmadi, F.; Zamanzadeh, S.M. Groundwater pesticides residue in the southwest of Iran-Shushtar plain. Environ. Earth Sci. 2012, 65, 231–239.
  • Roy, S.; Singh, S.B. Liquid chromatography method for the micro-quantitative determination of clodinafop in soil, wheat and Phalaris minor. J. Chromatogr. A 2005, 1065, 199–206.
  • Roy, S.; Singh, S.B. Effect of soil type, soil pH, and microbial activity on persistence of clodinafop herbicide. Bull. Environ. Contam. Toxicol. 2006, 77, 260–266.
  • Roy, S.; Singh, S.B. Phototransformation of clodinafop-propargyl. J. Environ. Sci. Health Part B. 2005, 40, 525–534.
  • Roy, S.; Das T.K.; Singh, S.B. Persistence of clodinafop in soil, wheat crop and Phalaris minor. Pestic. Res. J. 2006, 18, 87–91.
  • Singh, B. Degradation of clodinafop-propargyl by Pseudomonas sp. strain B2. Bull. Environ. Contam. Toxicol. 2013, 91, 730–733.
  • Li, Y.; Chen, Q.; Wang, C.-H.; Cai, S.; He, J.; Huang, X.; Li, S.-P. Degradation of acetochlor by consortium of two bacterial strains and cloning of a novel amidase gene involved in acetochlor-degrading pathway. Bioresource Technol. 2013, 148, 628–631.
  • Heim, K., Schuphan, I., Schmidt, B. Behaviour of [14C]-4-nitrophenol and [14C]-3,4-dichloroaniline in laboratory sediment-water systems - part I. metabolic fate and partitioning of radioactivity. Environ. Toxicol. Chem. 1994, 13, 879–888.
  • Junge, T.; Claßen, N.; Schäffer, A.; Schmidt, B. Fate of the veterinary antibiotic 14C-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues. J. Environ. Sci. Health Part B. 2012, 47, 858–868.
  • Griebler, T. Dimethylsulfoxide (DMSO) reduction: a new approach to determine microbial activity in freshwater sediments. J. Microbiol. Methods. 1997, 29, 31–40.
  • Sparling, G.P.; Searle, P.L. Dimethyl sulphoxide reduction as a sensitive indicator of microbial activity in soil: The relationship with microbial biomass and mineralization of nitrogene and sulphur. Soil Biol. Biochem. 1993, 25, 251–256.
  • Alef, K.; Kleiner, D. Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethylsulfoxide reduction. Biol. Fertil. Soils. 1989, 8, 349–355.
  • Aiken, G.R.; Thurman, E.M.; Malcolm, R.L.; Walton, H.F. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution. Anal. Chem. 1979, 51, 1799–1803.
  • Zwiener, C.; Kumka, M.U.; Abbt-Braun, G.; Frimmel, F.H. Adsorbed and bound residues in fulvic acid fractions of a contaminated groundwater–isolation, chromatographic and spectroscopic characterization. Acta Hydrochim. Hydrobiol. 1999, 27, 208–213.
  • Piccolo, A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–133.
  • Kästner, M.; Nowak, K.M.; Miltner, A.; Trapp, S.; Schäffer, A. Classification and modelling of non-extractable residues (NER) formation of xenobiotics in soil – a synthesis. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2107–2171.
  • Rick, S.K.; Slife F.W.; Banwart W.L. Adsorption of selective grass herbicides by soils and sediments. Weed Sci. 1987, 35, 282–288.
  • Walker, W.W.; Cripe, C.R.; Pritchard, P.H.; Bourquin, A.W. Biological and abiotic degradation of xenobiotic compounds in in vitro estuarine water and sediment/water systems. Chemosphere 1988, 17, 2255–2270.
  • European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance diclofop (considered variant diclofop-methyl). EFSA Journal 2010, 8,1718–1792.
  • Anonymous. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenoxaprop-P, finalised: 29 November 2007. EFSA Scientific Report 2007, 121, 1–76. Available at http://www.efsa.europa.eu/de/efsajournal/doc/121r.pdf. (accessed Sep 2014)
  • European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance fluazifop-P (evaluated variant fluazifop-P-butyl). EFSA Journal 2012, 10, 2945–3022.
  • Anonymous. Conclusion regarding the peer review of the pesticide risk assessment of the active substance quizalofop-P (considered variants quizalofop-P-ethyl and quizalofop-P-tefuryl), issued on 26 November 2008. EFSA Scientific Report 2008, 205, 1–216. Available at http://www.efsa.europa.eu/de/scdocs/doc/205r.pdf. (accessed Sep 2014)
  • Junge, T.; Meyer, K.C.; Ciecielski, K.; Adams, A.; Schäffer, A.; Schmidt, B. Characterization of non-extractable 14C- and 13C-sulfadiazine residues in soil including simultaneous amandment of pig manure. J. Environ. Sci. Health Part B 2011, 46, 137–149.
  • Ertunc, T.; Hartlieb, N.; Berns, A.; Klein, W.; Schaeffer, A. Investigations on the binding mechanism of the herbicide simazine to dissolved organic matter in leachates of compost. Chemosphere. 2002, 49, 597–604.
  • Roberts, T.R. Non-extractable pesticide residues in soils and plants. Pure Appl. Chem. 1984, 56, 945–956.
  • Barriuso, E.; Benoit, P.; Dubus, I.G. Formation of pesticide nonextractable (bound) residues in soil: Magnitude, controlling factors and reversibility. Environ. Sci. Technol. 2008, 42, 1845–1854.
  • Barraclough, D.; Kearney, T.; Croxford, A. Bound residues: environmental solution or future problem? Environ. Pollut. 2005, 133, 85–90.
  • Mamy, L.; Barriuso, E.; Gabrielle, B. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag. Sci. 2005, 61, 905–916.
  • Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: a review. Environ. Pollut. 2000, 108, 3–14.
  • Senesi, N. Binding mechanisms of pesticides to soil humic substances. Sci. Total Environ. 1992, 123/124, 63–76.
  • Craven, A. Bound residues of organic compounds in the soil: the significance of pesticide persistence in soil and water: a European regulatory view. Environ. Pollut. 2000, 108, 15–18.
  • Pino, N.J.; Domínguez, M.C.; Peñuela, G.A. Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated site. J. Environ. Sci. Health Part B. 2011, 46, 173–180.
  • Kubota, M.; Kawahara, K.; Sekiya, K.; Uchida, T.; Hattori, Y.; Futamata, H.; Hiraishi, A. Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst. Appl. Microbiol. 2005, 28, 165–174.
  • Euzéby, J. Validation of publication of new names and new combinations previously effectively published outside the IJSEM, validation list no. 103. Int. J. Syst. Evol. Microbiol. 2005, 55, 983–985.
  • Yoon, Y-.H.; Kang, S.-J.; Park, S.; Kim, W.; Oh, T.-K. Nocardioides caeni sp. nov., isolated from wastewater. Int. J. Syst. Evol. Microbiol. 2009, 59, 2794–2797.
  • Cui, Y.; Woo, S.-G.; Lee, J.; Sinha, S.; Kang, M.-S.; Jin, L.; Kim, K.K.; Park, J.; Lee, L.; Lee, S.-T. Nocardioides daeguensis sp. nov., a nitrate reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 2013, 63, 3727–3732.
  • Homklin, S.; Ong, S.K.; Limpiyakorn, T. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry. J. Hazard. Mater. 2012, 221, 35–44.
  • Inoue, K.; Habe, H.; Yamane, H.; Nojiri, H. Characterization of novel carbazole catabolism genes from gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl. Environ. Microbiol. 2006, 72, 3321–3329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.