Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 50, 2015 - Issue 8
221
Views
21
CrossRef citations to date
0
Altmetric
ARTICLES

Ozone-driven photocatalyzed degradation and mineralization of pesticide, Triclopyr by Au/TiO2

, , , , &
Pages 571-583 | Received 29 Nov 2014, Published online: 11 Jun 2015

References

  • Chowdhury, A.; Pradhan, S.; Saha, M.; Sanyal, N. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Ind. J. Microbio. 2008, 48, 114–127.
  • Aktar, A. Md.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol. 2009, 2, 1–12.
  • Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Engin. Life Sci. 2005, 5, 497–525.
  • Gerty, J.H.P.G.; Peter, W.C.; Michael, R.V.H.; Mark, O.K.; Laurie, G.G. Influence of sewage and pharmaceuticals on soil microbial function. Environ. Toxic. Chem. 2011, 30, 1086–1095.
  • Dachipally, P.; Jonnalagadda, S.B. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems, J. Environ. Sci. Heal. A 2011, 46, 887–897.
  • Chetty, E.C.; Maddila, S.; Dasireddy, D.B.C.V.; Jonnalagadda, S.B. Efficient conversion of 1,2-dichlorobenzene to mucochloric acid with ozonation catalyzed by V2O5 loaded metal oxides. Appl. Catal. B: Environ. 2012, 117-118, 18–28.
  • Chetty, E.C.; Maddila, S.; Southway, C.; Jonnalagadda, S.B. Ozone initiated Ni/metal oxide catalyzed conversion of 1,2-dichlorobenzene to mucochloric acid in aqueous solutions. Indu. Engin. Chem. Res. 2012, 51, 2864–2873.
  • Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.
  • Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.
  • Alnaizy, R.; Akgerman, A. Advanced oxidation of phenolic compounds. Advan. Environ. Res. 2000, 4, 233–244.
  • Reisner, E.; Powell, D.J.; Cavazza, C.; Fontecilla-Camps, J.C.; Armstrong, F.A. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 2009, 131, 18457–18466.
  • Hamal, D.B.; Haggstrom, J.A.; Marchin, G.L.; Ikenberry, M.A.; Hohn, K.; Klabunde, K.J. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010, 26, 2805–2810.
  • Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219.
  • Choi, J.; Park, H.; Hoffmann, M.R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C. 2010, 114, 783–792.
  • Li, X.Z.; Li, F.B. Study of Au/Au3+−TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 2001, 35, 2381–2387.
  • Bamwenda, G.R.; Tsubota, S.; Nakamura, T.; Haruta, M. Catal. Lett. 1997, 44, 83–96.
  • Zanella, R.; Giorgio, S.; Henry, C.R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642.
  • Standard methods for the examination of water and wastewater, Taylor & Francis, 20th ed, Washington, DC, 1998.
  • Maddila, S.; Dasireddy, V.D.B.C.; Jonnalagadda, S.B. Ce-V loaded metal oxides as catalysts for dechlorination of chloronitrophenol by ozone. Appl, Catal. B: Environ. 2014, 150-151, 305–314.
  • Rideh, L.; Wehrer, A.; Ronze, D.; Zoulalian, A. Photocatalytic degradation of 2- chlorophenol in TiO2 aqueous suspension: modeling of reaction rate, Ind. Eng. Chem. Res. 1997, 36, 4712–4718.
  • Yu, J.G.; Yu, X.X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 2008, 42, 4902–4907.
  • Huang, W.; Tang, X.; Wang, Y.; Koltypin, Y.; Gedanken, A. Selective synthesis of anatase and rutile via ultrasound irradiation. Chem. Commun. 2000, 15, 1415–1416.
  • Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F− doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816.
  • Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells. 2006, 90, 1773–1787.
  • Yu, J.; Yue, L.; Liu, S.; Huang, B.; Zhang, X. Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres. J. Collid. Interf. Sci. 2009, 334, 58–64.
  • Subramanian, V.; Wolf, E.E.; Kamat, P.V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc. 2004, 126, 4943–4950.
  • Murdoch, M.; Waterhouse, G.I.N.; Nadeem, M.A.; Metson, J.B.; Keane, M.A.; Howe, R.F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492.
  • Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol. 2002, 36, 1202–1211.
  • Arabatzis, I.M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S.G.; Falaras, P.Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, J. Catal. 2003, 220, 127–135.
  • Zuma, F.; Lin, J.; Jonnalagadda, S.B. Ozone-initiated disinfection kinetics of Escherichia coli in water. J. Environ. Sci. & Heal. A, 2009, 44, 48–56.
  • Kuriechen, S.K.; Murugesan, S.; Raj, S.P.; Maruthamuthu, P. Visible light assisted photocatalytic mineralization of reactive red 180 using colloidal TiO2 and oxone, Chem. Eng. J. 2011, 174, 530–538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.