Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 51, 2016 - Issue 3
192
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process

, , &
Pages 182-191 | Received 09 Jul 2015, Published online: 15 Dec 2015

References

  • Bracey, D.; Holyoak, C.D.; Coote, P.J. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. 1998, 85(6), 1056–1066.
  • Cherrington, C.A.; Hinton, M.; Mead, G.C.; Chopra, I. Organic acids: chemistry, antibacterial activity and practical applications. Adv. Microb. Physiol. 1991, 32, 87–108.
  • Holyoak, C.D.; Bracey, D.; Piper, P.W.; Kuchler, K.; Coote, P.J. The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J. Bacteriol. 1999, 181(15), 4644–4652.
  • Hazan, R.; Levine, A.; Abeliovich, H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70(8), 4449–4457.
  • Luu, R.A.; Kootstra, J.D.; Nesteryuk, V.; Brunton, C.N.; Parales, J.V.; Ditty, J.L.; Parales, R.E. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol. Microbiol. 2015, 96(1), 134–147.
  • Collier, L.S.; Nichols, N.N.; Neidle, E.L. benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J. Bacteriol. 1997, 179(18), 5943–5946.
  • Chaudhry, M.T.; Huang, Y.; Shen, X.H.; Poetsch, A.; Jiang, C.Y.; Liu, S.J. Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology 2007, 53(3), 857–865.
  • Yamaguchi, M.; Fujisawa, H. Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J. Biol. Chem. 1980, 255(11), 5058–5063.
  • Pérez-Pantoja, D.; Leiva-Novoa, P.; Donoso, R.A.; Little, C.; Godoy, M.; Pieper, D.H.; González, B. Hierarchy of carbon source utilization in soil bacteria: hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis JMP134. Appl. Environ. Microbiol. 2015, 81(12), 3914–3924.
  • Zhan, Y.; Yu, H.; Yan, Y.; Ping, S.; Lu, W.; Zhang, W.; Chen, M.; Lin, M. Benzoate catabolite repression of the phenol degradation in Acinetobacter calcoaceticus PHEA-2. Curr. Microbiol. 2009, 59, 368–373.
  • Chang, H.K.; Zylstra, G.J. Examination and expansion of the substrate range of m-hydroxybenzoate hydroxylase. Biochem. Biophys. Res. Commun. 2008, 371, 149–153.
  • van Gorcom, R.F.; Boschloo, J.G.; Kuijvenhoven, A.; Lange, J.; van Vark, A.J.; Bos, C.J.; van Balken, J.A.; Pouwels, P.H.; van den Hondel, C.A. Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily. Mol. Gen. Genet. 1990, 223, 192–197.
  • Grant, D.J.W.; Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 1969, 35, 325–343.
  • Sauret-Ignazi, G.; Gagnon, J.; Béguin, C.; Barrelle, M.; Markowicz, Y.; Pelmont, J.; Toussaint, A. Characterisation of a chromosomally encoded catechol 1,2-dioxygenase (E.C. 1.13.11.1) from Alcaligenes eutrophus CH34. Arch. Microbiol. 1996, 166(1), 42–50.
  • Brinkrolf, K.; Brune, I.; Tauch, A. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Gen. Mol. Res. 2006, 5(4), 773–789.
  • Urszula, G.; Izabela, G.; Danuta, W.; Sylwia, L. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol. 2009, 40(2), 285–291. doi:10.1590/S1517–838220090002000014.
  • Bundy, B.M.; Campbell, A.L.; Neidle, E.L. Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J. Bacteriol. 1998, 180(17), 4466–4474.
  • Park, S.H.; Kim, J.W.; Yun, S.H.; Leem, S.H.; Kahng, H.Y.; Kim, S.I. Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach. J. Microbiol. 2006, 44(6), 632–640.
  • Kim, S.I.; Leem, S.-H.; Choi, J.-S.; Chung, Y.H.; Kim, S.; Park, Y.-M.; Park, Y.K.; Lee, Y.N.; Ha, K.-S. Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J. Bacteriol. 1997, 179, 5226–5231.
  • Murakami, S.; Takashima, A.; Takemoto, J.; Takinaka, S.; Shinke, R.; Aoki, K. Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Gene 1999, 226, 189–198.
  • Briganti, F.; Pessione, E.; Giunta, C.; Mazzoli, R.; Scozzafava, A. Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. J. Protein Chem. 2000, 19, 709–716.
  • Solyanikova, I.P.; Golovlev, E.L.; Lisnyak, O.V.; Golovleva, L.A. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways. Biokhimiya (Moscow). 1999, 64, 824–831.
  • Suvorova, M.V.; Solyanikova, I.P.; Golovleva, L.A. Specificity of catechol ortho-cleavage during para-toluate degradation by Rhodococcus opacus 1CP. Biokhimiya (Moscow). 2006, 71(12), 1316–1323.
  • Shumkova, E.S.; Solyanikova, I.P.; Plotnikova, E.G.; Golovleva, L.A. Degradation of para-toluate by the bacterium Rhodococcus ruber P25. Microbiology (Moscow). 2009, 78(3), 376–378.
  • Solyanikova, I.P.; Emelyanova, E.V.; Shumkova, E.S.; Egorova, D.O.; Korsakova, E.S.; Plotnikova, E.G.; Golovleva, L.A. Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria. Intern. Biodeter. Biodegrad. 2015, 100, 155–164.
  • Gorlatov, S.N.; Maltseva, O.V.; Shevchenko, V.I.; Golovleva, L.A. Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya (Moscow). 1989, 58, 647–651.
  • Solyanikova, I.P.; Mulyukin, A.L.; Suzina, N.E.; El-Registan, G.I.; Golovleva, L.A. The effect of dormant stage on degradative activity of the strain Rhodococcus opacus 1CP. J. Environ. Sci. Health B. 2011, 46, 638–647.
  • Schlömann, M.; Schmidt, E.; Knackmuss, H.-J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol. 1990, 172, 5112–5118.
  • Ampe, F.; Uribelarrea, J.L.; Aragao, G.M.; Lindley, N.D. Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate. Appl. Environ. Microbiol. 1997, 63(7), 2765–2770.
  • Leveau, J.H.; Zehnder, A.J.; van derMeer, J.R. The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J. Bacteriol. 1998, 180(8), 2237–2243.
  • Lengeler, J.W.; Drews, G.; Schlegel, G.H. (Eds.). Biology of the Prokaryotes; Georg Thieme Verlag: Stuttgart, Germany, 1999; 955 pp.
  • Yamaguchi, M.; Fujisawa, H. Subunit structure of oxygenase component in benzoate-1,2-dioxygenase system from Pseudomonas arvilla C-1. J. Biol. Chem. 1982, 257(21), 12497–12502.
  • Kitagawa, W.; Miyauchi, K.; Masai, E.; Fukuda, M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J. Bacteriol. 2001, 183(22), 6598–6606.
  • Harayama, S.; Rekik, M.; Bairoch, A.; Neidle, E.L.; Ornston, L.N. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J. Bacteriol. 1991, 173(23), 7540–7548.
  • Engesser, K.H.; Auling, G.; Busse, J.; Knackmuss, H.-J. 3-Fluorobenzoate-enriched bacterial strain FLB300 degrades benzoate and all three isomeric monofluorobenzoates. Arch. Microbiol. 1990, 153, 193–199.
  • Haddad, S.; Eby, D.M.; Neidle, E.L. Cloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070. Appl. Environ. Microbiol. 2001, 67(6), 2507–2514.
  • Dixon, M.; Webb, E.C.; Thorne, C.J.R.; Tipton, K.F. Enzymes, 3rd ed.; Longmans, Green: London, 1979; 1116 pp.
  • Krupyanko, V.I. Correction of Dixon plots. Eur. Chem. Bull. 2015, 4(3), 142–153.
  • Maltseva, O.V.; Solyanikova, I.P.; Golovleva, L.A. Pyrocatechases of the Rhodococcus erythropolis strain – a chlorophenol destructor: purification and properties. Biokhimiya (Moscow). 1991, 56, 2188–2197.
  • D'Argenio, D.A.; Vetting, M.W.; Ohlendorf, D.H.; Ornston, L.N. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases. J. Bacteriol. 1999, 181(20), 6478–6487.
  • Ferraroni, M.; Kolomytseva, M; Scozzafava, A.; Golovleva, L.; Briganti, F. X-ray structures of 4-chlorocatechol 1,2-dioxygenase adducts with substituted catechols: new perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity. J. Struct. Biol. 2013, 181, 274–282.
  • Kim, S.I.; Song, S.Y.; Kim, K.W.; Ho, E.M.; Oh, K.H. Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res. Microbiol. 2003, 154(10), 697–703.
  • Grund, E.; Knorr, C.; Eichenlaub, R. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Appl. Environ. Microbiol. 1990, 56(5), 1459–1464.
  • Patrauchan, M.A.; Florizone, C.; Dosanjh, M.; Mohn, W.W.; Davies, J.; Eltis, L.D. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J. Bacteriol. 2005, 187(12), 4050–4063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.