Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 51, 2016 - Issue 3
343
Views
36
CrossRef citations to date
0
Altmetric
ARTICLES

Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L.

&
Pages 192-203 | Received 23 Jul 2015, Published online: 16 Dec 2015

References

  • ADEQ Pesticides Annual Report. Arizona Department of Environmental Quality, 2013, 48–65.
  • Barco-Bonilla, N.; Romero-Gonzalez, R.; Plaza-Bolanos, P.; Martinez Vidal, J.L.; Garrido Frenich, A. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain). Sci. Total Environ. 2013, 447, 381–389.
  • De Wilde, T.; Spanoghe, P.; Ryckeboer, J.; Jaeken, P.; Springael, D. Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere 2009, 75, 100–108.
  • Foo, K.; Hameed, B. Insights into the modelling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10.
  • Terdkiatburana, T.; Wang, S.; Tadé, M. Competition and complexation of heavy metal ions and humic acid on zeolitic MCM-22 and activated carbon. Chem. Eng. J. 2008, 139, 437–444.
  • Boudesocque, S.; Guillon, E.; Aplincourt, M.; Martel, F.; Noel, S. Use of a low-cost biosorbent to remove pesticides from wastewater. J. Environ. Qual. 2008, 37, 631–638.
  • Memon, G.Z.; Bhanger, M.I.; Akhtar, M.; Talpur, F.N.; Memon, J.R. Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem. Eng. J. 2008, 138, 616–621.
  • Akhtar, M.; Iqbal, S.; Bhanger, M.I.; Moazzam, M. Utilization of organic by-products for the removal of organophosphorous pesticide from aqueous media. J. Hazard. Mater. 2009, 162, 703–707.
  • El Bakouri, H.; Morillo, J.; Usero, J.; Vanderlinden, E.; Vidal, H. Effectiveness of acid-treated agricultural stones used in biopurification systems to avoid pesticide contamination of water resources caused by direct losses: Part I. Equilibrium experiments and kinetics. Bioresour. Technol. 2010, 101, 5084–5091.
  • Balkaya, N. Pesticide removal from wastewater. Int. J. Water 2002, 2, 212–219.
  • Akhtar, M.; Hasany, S.M.; Bhanger, M.; Iqbal, S. Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions. Chemosphere 2007, 66, 1829–1838.
  • Brás, I.P.; Santos, L.; Alves, A. Organochlorine pesticides removal by pinus bark sorption. Environ. Sci. Technol. 1999, 33, 631–634.
  • Vryzas, Z.; Papadakis, E.N.; Vassiliou, G.; Papadopoulou-Mourkidou, E. Occurrence of pesticides in trans boundary aquifers of North-Eastern Greece. Sci. Total Environ. 2012, 441, 41–48.
  • El-Khaiary, M.I. Least-squares regression of adsorption equilibrium data: Comparing the options. J. Hazard. Mater. 2008, 158, 73–87.
  • Ocampo-Perez, R.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M. Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models. J. Colloid Interface Sci. 2011, 364, 195–204.
  • Lagergren, S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898, 24, 1–27.
  • Ho, Y.S. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003, 37, 2323–2330.
  • Chien, S.; Clayton, W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268.
  • Weber, W.; Morris, J. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60.
  • Allen, S.J.; Gan, Q.; Matthews, R.; Johnson, P.A. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 2003, 88, 143–152.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295.
  • Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470.
  • Jovanovic, D.. Kolloid Zeitschrifi, Z. Poll-mere 1969, 235, 1203.
  • Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 1940, 12, 217–222.
  • Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024.
  • Sips, R. Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 1948, 16, 490–495.
  • Toth, J. State equations of the solid-gas interface layers. Acta Chim. Acad. Sci. Hung. 1971, 69, 311–328.
  • Koble, R.A.; Corrigan, T.E. Adsorption isotherms for pure hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387.
  • Radke, C.; Prausnitz, J. Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. Fund. 1972, 11, 445–451.
  • Fritz, W.; Schluender, E.U. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem. Eng. Sci. 1974, 29, 1279–1282.
  • Prola, L.D.; Acayanka, E.; Lima, E.C.; Umpierres, C.S.; Vaghetti, J.C.; Santos, W.O.; Laminsi, S.; Djifon, P.T. Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind. Crops Prod. 2013, 46, 328–340.
  • Saiers, J.E.; Hornberger, G.M. Migration of 137 Cs through quartz sand: Experimental results and modeling approaches. J. Contam. Hydrol. 1996, 22, 255–270.
  • Ratkowsky, D.A. Principles of nonlinear regression modeling. J. Ind. Microbiol. 1993, 12, 195–199.
  • Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.M.; Crini, G. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater. 2008, 157, 34–46.
  • Porter, J.; McKay, G.; Choy, K. The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci. 1999, 54, 5863–5885.
  • Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.
  • Kapoor, A.; Yang, R. Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep. Purif. 1989, 3, 187–192.
  • Boulinguiez, B.; Le Cloirec, P.; Wolbert, D. Revisiting the determination of Langmuir parameters: Application to tetrahydrothiophene adsorption onto activated carbon, Langmuir 2008, 24, 6420–6424.
  • Jin, X.; Ren, J.; Wang, B.; Lu, Q.; Yu, Y. Impact of coexistence of carbendazim, atrazine, and imidacloprid on their adsorption, desorption, and mobility in soil. Environ. Sci. Pollut. Res. 2013, 20, 6282–6289.
  • Liu, Y. New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf. Physicochem. Eng. Aspects 2008, 320, 275–278.
  • Rojas, R.; Vanderlinden, E.; Morillo, J.; Usero, J.; El Bakouri, H. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Sci. Total Environ. 2014, 488, 124–135.
  • Cheung, W.; Szeto, Y.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904.
  • Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13.
  • Cardoso, N.F.; Lima, E.C.; Pinto, I.S.; Amavisca, C.V.; Royer, B.; Pinto, R.B.; Alencar, W.S.; Pereira, S.F. Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manage. 2011, 92, 1237–1247.
  • Silva, C.R.; Gomes, T.F.; Andrade, G.C.; Monteiro, S.H.; Dias, A.C.; Zagatto, E.A.; Tornisielo, V. L. Banana peel as an adsorbent for removing atrazine and ametryne from waters. J. Agric. Food Chem. 2013, 61, 2358–2363.
  • Landman, U.; Montroll, E. Adsorption on heterogeneous surfaces. I. Evaluation of the energy distribution function via the Wiener and Hopf method. J. Chem. Phys. 1976, 64, 1762–1767.
  • MvKay, G.; Mesdaghinia, A.; Nasseri, S.; Hadi, M.; Aminabad, M.S. Optimum isotherms pf dye sorption by activated carbon: Fractional theoretical capacity and error analysis. Chem. Eng. J. 2014, 251, 236–247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.