Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 52, 2017 - Issue 1
182
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Resistance in bacteria and indirect beta-lactamase detection in E. coli isolated from Culex pipiens detected by matrix-assisted laser desorption ionization time of flight mass spectrometry

, , &
Pages 64-69 | Received 18 May 2016, Accepted 12 Aug 2016, Published online: 11 Oct 2016

References

  • Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K.; Wertheim, H. F.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H. Antibiotic resistance — the need for global solutions. Lancet. Infect. Dis. 2013, 13, 1057–1098.
  • Ammor, M. S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat. Sci. 2007, 76, 138–146.
  • Jutkina, J.; Rutgersson, C.; Flach, C. F.; Larsson, D. J. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Tot. Environ. 2016, 548, 131–138.
  • Calero-Cáceres, W.; Melgarejo, A.; Colomer-Lluch, M.; Stoll, C.; Lucena, F.; Jofre, J.; Muniesa, M. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environ. Sci. Technol. 2014, 48, 7602–7611.
  • Liu, Y. M.; Lee, Y. T.; Kuo, S. C.; Chen, T. L.; Liu, C. P.; Liu, C. E. Comparison between bacteremia caused by Acinetobacter pittii and Acinetobacter nosocomialis. J. Microbiol. Immunol. Infect. 2015, http://dx.doi.org/10.1016/j.jmii.2015.01.003
  • Pagano, M.; Poirel, L.; Martins, A. F.; Rozales, F. P.; Zavascki, A. P.; Barth, A. L.; Nordmann, P. Emergence of NDM-1-producing Acinetobacter pittii in Brazil. Inter. J. Antimicrob. Agents. 2015, 45, 444–445.
  • Kempf, M.; Rolain, J. M.; Diatta, G.; Azza, S.; Samb, B. Carbapenem resistance and Acinetobacter baumannii in Senegal: the paradigm of a common phenomenon in natural reservoirs. PLoS One 2012, 7, 394–395.
  • La Scola, B.; Raoult, D. Acinetobacter baumannii in human body louse. Emerg. Infect. Dis. 2004, 10, 1671–1673.
  • Bouvresse, S.; Socolovshi, C.; Berdjane, Z.; Durand, R.; Izri, A. No evidence of Bartonella quintana but detection of Acinetobacter baumannii in head lice from elementary schoolchildren in Paris. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 475–477.
  • Kempf, M.; Abdissa, A.; Diatta, G.; Trape, J. F.; Angelakis, E. Detection of Acinetobacter baumannii in human head and body lice from Ethiopia and identification of new genotypes. Int. J. Infect. Dis. 2012, 16, 680–683.
  • WHO. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization: Geneva, Switzerland, 2014; 232 pp.
  • Burckhardt, I.; Zimmermann, S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 2011, 49, 3321–3324.
  • Xiao, D.; Zhao, F.; Lv, M.; Zhang, H.; Zhang, Y.; Huang, H.; Zhang, J. Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagnos. Microbiol. Infect. Dis. 2012, 73, 301–307.
  • Keilhauer, E. C.; Hein, M. Y.; Mann, M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell. Proteom. 2015, 14, 120–135.
  • Sparbier, K.; Schubert, S.; Weller, U.; Boogen, C.; Kostrzewa, M. Matrix-assisted laser desorption ionization–time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J. Clin. Microbiol. 2012, 50, 927–937.
  • Wajima, T.; Seyama, S.; Nakamura, Y.; Kashima, C.; Nakaminami, H.; Ushio, M.; Noguchi, N. Prevalence of macrolide-non-susceptible isolates among β-lactamase-negative ampicillin-resistant Haemophilus influenzae in a tertiary care hospital in Japan. J. Glob. Antimicrob. Resist. 2016, 6, 22–26.
  • Junza, A.; Montane, A.; Barbosa, J.; Minguillón, C.; Barrón, D. High resolution mass spectrometry in the identification of transformation products and metabolites from β-lactam antibiotics in thermally treated milk. J. Chromatograph. A. 2014, 1368, 89–99.
  • Jelsch, C.; Mourey, L.; Masson, J. M.; Samama, J. P. Crystal-structure of Escherichia coli Tem1 beta-lactamase at 1.8-Angstrom. Resol. Prot. 1993, 16, 364–383.
  • EUCAST. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method, Version 5.0. EUCAST: Växjö, Sweden, 2015.
  • EUCAST. European Committee on Antimicrobial Susceptibility Testing, & European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 6.0 (valid from 2016-01-01), EUCAST: Växjö, Sweden, 2016.
  • Hrabák, J.; Walková, R.; Študentová, V.; Chudáčková, E.; Bergerová, T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 3222–3227.
  • Murray, P. R. Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry: usefulness for taxonomy and epidemiology. Clin. Microbiol. Infect. 2010, 16, 1626–1630.
  • Shah, H. N.; Gharbia, S. Mass Spectrometry for Microbial Proteomics. Wiley: Chichester, UK, 2010; pp. 341.
  • Lin, Y. S.; Tsai, P. J.; Weng, M. F.; Chen, Y. C. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Analyt. Chem. 2005, 77, 1753–1760.
  • Clark, A. E.; Kaleta, E. J.; Arora, A.; Wolk, D. M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603.
  • Nomura, F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology. Biochim. Biophys. Acta. 2015, 1854, 528–537.
  • Schrauzer, G. N.; Guth, T. D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1997, 99, 7189–7193.
  • Glish, G. L.; Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discovery, 2003, 2, 140–150.
  • Siuzdak, G. An introduction to mass spectrometry ionization: an excerpt from the expanding role of mass spectrometry in biotechnology. J. Lab. Autom. 2005, 9, 50–63.
  • Kailasa, S. K.; Wu, H. F. Surface modified silver selenide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry. Talanta. 2010, 83, 527–534.
  • Nizioł, J.; Rode, W.; Zielin´ski, Z.; Ruman, T. Matrix-free laser desorptionionization with silver nanoparticle-enhanced steel targets. Int. J. Mass Spectrom. 2013, 335, 22–32.
  • Khanam, A.; Tripathi, S. K.; Roy, D.; Nasim, M. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles. Colloids Surf. B. 2013, 102, 63–69.
  • Yang, M.; Fujino, T. Quantitative analysis of free fatty acids in human serum using biexciton auger recombination in cadmium telluride nanoparticles loaded on zeolite. Anal. Chem. 2014, 86, 9563–9569.
  • Kang, M. J.; Pyun, J. C.; Lee, J. C.; Choi, Y. J.; Park, J. H.; Park, J. G.; Lee, J. G.; Choi, H. J. Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass. Spectrom. 2005, 19, 3166–3170.
  • Kim, J. L.; Park, J. M.; Kang, M. J.; Pyun, J. C. Top-down synthesized TiO2 nanowires as a solid matrix for MALDI-TOF mass spectrometry. Anal. Chim. Acta. 2014, 836, 53–60.
  • Liu, Q.; Shi, J.; Jiang, G. Application of graphene in analytical sample preparation. TRAC-Trend. Anal. Chem. 2012, 37, 1–11.
  • Ren, S. F.; Guo, Y. L. Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. J. Am. Soc. Mass Spectrom. 2006, 17, 1023–1027.
  • Shevade, S. U.; Agrawal, G. N. Study of virulence factors of E. coli in community and nosocomial urinary tract infection. Ind. J. Medic. Specialit. 2015, 6, 158–160.
  • Morgand, M.; Vimont, S.; Bleibtreu, A.; Boyd, A.; Thien, H. V.; Zahar, J. R.; Arlet, G. Extended-spectrum beta-lactamase-producing Escherichia coli infections in children: are community-acquired strains different from nosocomial strains? Int. J. Medic. Microbiol. 2014, 304, 970–976.
  • Tyrrell, J. M.; Wootton, M.; Toleman, M. A.; Howe, R. A.; Woodward, M.; Walsh, T. R. Genetic & virulence profiling of ESBL-positive E. coli from nosocomial & veterinary sources. Vet. Microbiol. 2016, 186, 37–43.
  • Perianes-Díaz, M. E.; Novo-Veleiro, I.; Solís-Díaz, K.; Prolo-Acosta, A.; García-García, I.; Alonso-Claudio, G. Bacteriemia por Escherichia coli y Klebsiella pneumoniae productoras de betalactamasas de espectro extendido: factores asociados a mortalidad y reingreso hospitalario. Med. Clín. 2014, 142, 381–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.