Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 52, 2017 - Issue 4
319
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Optimal conditions for chlorothalonil and dissolved organic carbon in horizontal subsurface flow constructed wetlands

, , &
Pages 274-281 | Received 21 Jul 2016, Accepted 22 Oct 2016, Published online: 13 Jan 2017

References

  • Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.G. Mitigation strategies toreduce pesticide inputs into ground- and surface water and their effectiveness. A review, Sci. Total Environ. 2007, 384, 1–35.
  • ICA. Estadísticas de Comercialización de Plaguicidas Químicos de uso Agrícola 2010, Instituto Colombiano Agropecuario (ICA): Bogotá, 2011; 1–97.
  • ICA. Subgerencia de Protección Vegetal, DirecciónTécnica de Inocuidad e InsumosAgrícolas, EmpresasFabricantes, Formuladoras, Importadoras, Exportadoras, Distribuidoras y Envasadoras de Plaguicidas Químicos, Instituto Colombiano Agropecuario (ICA): Bogotá, 2009; 1–107.
  • UNEP-ILO-WHO. ‘Chlorothalonil’, Environmental Health Criteria 183; World Health Organization: Geneva, Switzerland, 1996.
  • Ukai, T.; Itou, T.; Katayama, A. Degradation of chlorothalonil in soils treated repeatedly with chlorothalonil. J. Pest Sci. 2003, 28, 208–211.
  • Blankenberg, A.G.B.; Braskerud, B.; Haarstad, K. Pesticide retention in two small constructed wetlands: treating non-point source pollution from agricul-ture runoff. Int. J. Environ. Anal. Chem. 2006, 86, 225–231.
  • Elsaesser, D.; Blankenberg, A.G.B.; Geist, A.; Mæhlum, T.; Schulz, R. Assessingthe influence of vegetation on reduction of pesticide concentration in exper-imental surface flow constructed wetlands: application of the toxic units approach. Ecol. Eng. 2011, 37, 955–962.
  • Jiake, L.; Zheng, L.; Zhixin, G.; Yajiao, L. Experiment and simulation of the purification effects of multi-level series constructed wetlands on urban surface runoff. Ecol. Eng. 2016, 91, 74–84.
  • Tournebize, J.; Chaumont, C.; Mander, Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng. 2016, 1–11.
  • Stern, D.A.; Khanbilvardi, R.; Alair, J.C.; Richardson, W. Description of flow through a natural wetland using dye tracer tests. Ecol. Eng. 2001, 18(2), 173–184.
  • Stearman, G.K.; George, D.B.; Carlson, K.; Lansford, S. Pesticide removal from container nursery runoff in constructed wetland cells. J. Environ. Qual. 2003, 32, 1548–1556.
  • Chiva, J. Hidráulica y fenómenos de transporte en humedalesconstruidos. In Nuevos Criteriospara el Diseño y Operación de Humedales Construidos. García, Joan; Morató, J.; Bayona, J.S., Eds.; Centro de Publicaciones de Campus Nord (CPET): Barcelona, 2004; 63–69.
  • Aguirre, P. Mecanismos de eliminación de la materiaorgánica y de los nutrientes en humedalesconstruidos de flujosubsuperficial. In Nuevos Criteriospara el Diseño y Operación de Humedales Construidos, Unaalternativa de bajocostopara el tratamiento de aguasresiduales; Morató, J.; García, J.; Bayona, J.S., Eds.; Centro de Publicaciones de Campus Nord (CPET): Barcelona, 2004; 17–29.
  • Morató, J.; Salcedo, I.; Codony, F.; Delgado, S.; García, J. Eliminación de microorganismos y dinámica del biofilm en humedalesconstruidos de flujosubsuperficial, Encuentrointernacional en fitodepuración International meeting on phytodepuration: Lorca, Murcia, España. 2005.
  • Garcia, J; Morato, J.; Bayona, M.; Aguirre, P. Perfomance of horizontal subsurface flow constructed wetlands with different depth. Proceedings of the 9th IWA Intl Conference on Wetlands System for water pollution control Avignon. Francia, 2004.
  • Axelrood, P.E.; Clarke, A.M.; Radley, R.; Zemcov, S.J.V. Douglas-fir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Can. J. Microbiol. 1996, 42, 690–700.
  • Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35(5), 11–17.
  • Pundsack, J.; Axler, R.; Hicks, R.; Henneck, J.; Nordmann, D.; McCarthy, B. Seasonal pathogen removal by alternative on-site wastewater treatment systems. Water Environ. Res. 2001, 73, 204–212.
  • Vacca, G.; Wand, H.; Nikolausz, M.; Kuschk, P.; Kästner, M. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Res. 2005, 39, 1361–1373.
  • Gregoire, C.; Elsaesser, D.; Huguenot, D.; Lange, J.; Lebeau, T.; Merli, A.; Mose, R.; Passeport, E.; Payraudeau, S.; Schuetz, T.; Schulz, R.; Tapia-Padilla, G.; Tournebize, J.; Trevisan, M.; Wanko, A. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ. Chem. Lett. 2009, 7, 205–231.
  • US.EPA. Manual of constructed wetlands treatment of municipal waster water, Cincinnati. Ohio. 2000.
  • Garcia, J.; Aguirre, P.; Mujeriego, R.; Huang, Y.; Ortiz, L.; Bayona, J.M. ; Initial contaminant removal performance in horizontal flow reed beds treating urban wastewater. Water Res. 2004, 38(7), 1669–1678.
  • Huang, Y.; Ortiz, L.; Aguirre, P.; Garcia, J.; Mujeriego, R.; Bayona, J.M. Effect of design parameters in horizontal flow constructed wetland on the behaviour of volatile fatty acids and volatile alkylsulfides. Chemosphere 2005, 59, 769–777.
  • Crites, R.; Tchobanoglous, G. Small and Decentralized Wastewater Management Systems. McGraw-Hill: New York, NY, 2002.
  • Dangcong, P.; Barnet, N.; Delgenes, J.P.; Moletta, R. Effect of oxygen supply methods on the performance of a sequencing batch reactor for ammonium nitrification. Water Environ. Res. 2000, 72(2), 195–200.
  • Eaton, A.D.; Clesceri, L.S.; Rice, E.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, 2005; 1–1368.
  • Morató, J. Formación de biofilms y riesgosanitario en sistemas de distribución de agua. Tesis Doctoral, Universidad Autónoma de Barcelona: Barcelona, España, 2001; 1–271.
  • Arias, C.A.; Cabello, A.; Brix, H.; Johansen, N.H. Removal of indicator bacteria from municipal wastewater in an experimental two stage vertical flow constructed wetland system. Water Sci. Technol. 2003, 48(5), 35–41.
  • Akratos, C.; Tsihrintzis, V. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191.
  • Pálfy, T.G.; Langergraber, G. The verification of the Constructed Wetland Model No. 1 implementation in HYDRUS using column experiment data. Ecol. Eng. 2014, 68, 105–115.
  • Zhao, Y.; Xia, Y.; Yang, Z. Growth and nutrient accumulation of Phragmites australis in relation to wáter level variation and nutrient loadings in a shallow lake, J. Environ. Sci. 2013, 25(1), 16–25.
  • Seo, D.; Cho, J.S.; Lee, H.; Heo, J. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 2004, 39, 2445–2457.
  • Garcia, J.; Rousseau, D.P.L.; Morato, J.; Lesage, E.; Matamoros, V.; Bayona, J.M. Contaminant removal processes in subsurface-flow constructed wetlands: A review, Crit. Rev. Env. Sci. Technol. 2010, 40(7), 561–661.
  • Mark, B.; Jaime, N.; Kela, P.; Weber, T. A.; Roland, A. M. Microbial community metabolic function in subsurface flow constructed wetlands of different designs, Ecol. Eng. 2015, 80, 162–171.
  • Zhu, J-K.; Hasegawa, P.M.; Bressan, R.A. Molecular aspects of osmotic stress in plants. CRC Crit Rev. Plant Sci. 1997, 16, 253–277.
  • Brix, H.; Arias, C.A.; Del Bubba, M. How can phosphorus removal be sustained in subsurface- flow constructed wetlands? Proc. Int. Conf. Wetland Syst. Water Pollut. Control 2000, 7, 65–74.
  • Hunt, P.G.; Poach, M.E. State of the art for animal wastewater treatment in constructed wetlands. Water Sci. Technol. 2001, 44 (11–12), 19–25.
  • Novak, T.; Lipovšek, S.; Senčič, L.; Pabst, M.A.; Janžekovič, F. Adaptations in phalangiid harvestmen Gyasannulatus and Gyastitanus to their preferred water current adjacent habitats. Acta Oecolog. 2004, 26, 45–53.
  • Zúñiga, D.J. Influencia del Soporte y Tipo de Macrófita en la Remoción de Materia Orgánica y Nutrientes en Humedales Construidos de Flujo Subsuperficial Horizontal. Tesis Para Optar al Grado de Magíster en Ciencias de la Ingeniería con Mención en Ingeniería Bioquímica. Universidad Católica de Valparaíso. 2014.
  • Kong, L.; Wang, Y.B.; Zhao, L.N.; Chen, Z.H. Enzyme and root activities in surface-flow constructed wetlands. Chemosphere 2009, 76, 601–608.
  • Liu, X.; Huang, S.L.; Tang, T.; Liu, X.G.; Scholz, M. Growth characteristics and nutrient removal capability of plants in subsurface vertical flow constructed wetlands. Ecol. Eng. 2012, 44, 189–198.
  • Casas-Zapata, J.C.; Ríos, K.; Florville-Alejandre, T.R.; Morató, J.; Peñuela, G. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands. J. Environ. Sci. Health B 2013, 48, 122–132.
  • Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: a review, Hydrobiologia 2011, 674, 133–156.
  • J.Vymazal, Emergent plants used in free water surface constructed wetlands: a review, Ecol. Eng. 61P, 2013, 582–592.
  • Vymazal, J.; Brézinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review, Chem. Eng. J. 2016, 290, 232–242.
  • Edwards, K.R.; Cizkova, H.; Zemanova, K.; Santruckova, H. Plant growth and microbial processes in a constructed wetland planted with Phalarisarundinacea. Ecol. Eng. 2006, 27(2), 153–165.
  • Weber, K.P.; Legge, R.L. Comparison of the catabolic activity and catabolic profiles of rhizospheric: gravel-associated and interstitial microbial communities in treatment wetlands. Water Sci. Technol. 2013, 67, 886–893.
  • Weber, K. P.; Gagnon, V. Microbiology in treatment wetlands. Sustainable Sanit. 2014. 18.
  • Matamoros, V.; Arias, C.; Nguyen, L.C.; Salvado, V.; Brix, H. Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 2012, 88, 1083–1089.
  • Ríos, K.; Peñuela, G. Chlorothalonil degradation by a microbial consortium isolated from constructed wetlands in laboratory trials. Actual Biol. 2015, 37(102), 15–25.
  • Liang, B.; Wang, G.; Zhao, Y.; Chen, K.; Li, S.; Jiang, J. Facilitation of bacterial adaptation to chlorothalonil-contaminated sites by horizontal transfer of the chlorothalonil hydrolytic dehalogenasegene. AEM. 2011, 77(12), 4268–4272.
  • Katayama, A.; Itou, T.; Ukai, T. Ubiquitous capability to substitute chlorine atoms of chlorothalonil in bacteria. J. Pestic. Sci. 1997, 22, 12–16.
  • Regitano, J. B.; Tornisielo, V. L.; Lavorenti, A.; Pacovsky, R. S. Transformation pathways of 14C-chlorothalonil in tropical soil. Arch. Environ. Contam. Toxicol. 2001, 40, 295–302.
  • Bastardo, A.; Bastardo, H.; Rosales, J. Functional diversity of the heterotrophic bacteria in the lower orinoco river, Venezuela. Ecotropicos 2007, 20(1), 15–23.
  • Di-Martino, C.; López, N.; Raiger, L. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selectedas candidates for bioremediation. Int. Biodeterior. Biodegrad. 2012, 67, 15–20.
  • Wasi, S.; Jeelani, G.; Ahmad, M. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere 2008, 71, 1348–1355.
  • Xuedong, W.; Huili, W.; Defang, F. Biodegradation of imazapyr by free cells of Pseudomonas fluorescens Biotype II and Bacillus cereus isolated from soil. Bull. Environ. Contam.Toxicol. 2005, 74, 350–355.
  • Wang, G.; Liang, B.; Li, F.; Li, S. Recent advances in the biodegradation of chlorothalonil. Curr. Microbiol. 2011, 63, 450–457.
  • Wang, G.; Chen, H.; Bi, M.; Li, S. Bioremediation of chlorothalonil contaminated soil by utilizing Pseudomonas sp. strain CTN-3. Chin. J. Appl. Ecol. 2012, 23(3), 807–811.
  • Katayama, A.; Isemura, H.; Kuwatsuka, S. Population change and characteristics of chlorothalonil degrading bacteria in soil. J. Pestic. Sci. 1991, 16, 239–245.
  • Wang, H.; Wang, C.; Chen, F.; Wang, X. Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicol. Environ. Saf. 2011, 74, 1000–1005.
  • Agudelo, R.M.; Machado, C.; Aguirre, N.J.; Morató, J.; Peñuela, G. Optimal conditions for chlorpyrifos and dissolved organic carbon removal in subsurface flow constructed wetlands. Int. J. Environ. Anal. Chem. 2011, 91(7–8), 668–679.
  • Decamp, O.; Warren, A.; Sanchez, R. The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci. Technol. 1999, 40(3), 91–98.
  • Decamp, O.; Warren, A. Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol. Eng. 2000, 14, 293–299.
  • Decamp, O.; Warren, A. Abundance, biomass and viability of bacteria in wastewaters: impact of treatment in horizontal subsurface flow constructed Wetlands. Water Res. 2001, 35(14), 3496–3501.
  • Ríos, K. Evaluación de la capacidaddetoxificadora del biofilm para la remoción y/o transformación del plaguicidaclorotalonilo en un humedalconstruido de flujosubsuperficial horizontal a escalapiloto. Tesis de Maestría. Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia: Medellín, Colombia, 2010; 1–170.
  • Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kastner, M.; Bederski, O.; Muller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117.
  • García, M.; Soto, F.; González, J.M.; Bécares, E. A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecol. Eng. 2008, 32(3), 238–243.
  • Kimwaga, R. J.; Mbwette, T.S.A.; Mashauri, D.A.M. Modeling of fecal coliform removal in a coupled dynamic roughing filters and horizontal subsurface flow constructed wetlands treating domestic wastewater in Tanzania. 10th International Conference on Wetland Systems for Water Pollution Control, Lisbon, Portugal, 2006; 399–409.
  • Tanner, C.C. Plants as ecosystem engineers in subsurface flow treatment wetlands. Water Sci. Technol. 2001, 44(11–12), 9–17.
  • Vacca, G.; Wand, H.; Nikolausza, M.; Kuschka, P.; Kastner, M. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Res. 2005, 39, 1361–1373.
  • Collins, B.; McArthur, J.V.; Sharitz, R.R. Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands. Ecol. Eng. 2004, 23, 107–115.
  • Munch, Ch.; Neu, T.; Kuschk, P.; Roske, I. Root surface-the definitive detail for microbial transformation processes in constructed wetlands-a biofilm characteristic. Water Sci. Technol. 2007, 56(3), 271–276.
  • Gagnon, V.; Chazarenc, F.; Comeau, Y.; Brisson, J. Influence of macrophytespecies on microbial density and activity in constructed wetlands. Water Sci. Technol. 2007, 56(3), 249–254.
  • Tomlin, C.D.S. The Pesticide Manual, 12th Ed.; British Crop Protection Council: Farnham, UK, 2000; 413–415.
  • Tomlin, C.D.S. The Pesticide Manual-World Compendium, 11th Ed.; British Crop Protection Council: Surrey, UK, 1997; 1–208.
  • Gallagher, E.P.; Cattley, R.C.; Di Giulio, R.T. The acute toxicity and sublethal effects of chlorothalonil in channel catfish Ictalurus punctatus. Chemos. 1992, 24(1), 3–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.