Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 52, 2017 - Issue 6
414
Views
13
CrossRef citations to date
0
Altmetric
ARTICLES

Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium

, , , , &
Pages 367-375 | Received 10 Aug 2016, Accepted 08 Dec 2016, Published online: 03 Mar 2017

References

  • Joo, H.; Choi, K.; Hodgson, H. Human metabolism of atrazine. Pesticide. Biochem. Physiol. 2010, 9, 73–79.
  • Inecc.gob.mx. Instituto Nacional de Ecología y Cambio Climático. 2011. Available at http://www.inecc.gob.mx/ (accessed Feb 2011).
  • Inecc.gob.mx. Instituto Nacional de Ecología y Cambio Climático. 2012. Available at http://www.inecc.gob.mx/ (accessed Sep 2012).
  • Evy, A.M.; Nilanjana, D. Microbial degradation of atrazine, commonly used herbicide. Int. J. Adv. Biol. Res. 2012, 2(1), 16–23.
  • Smith, D.; Alvey, S.; Crowley, E.D. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. Microbiol. Ecol. 2005, 53, 265–273.
  • Dehghani, M.; Nasseri, S.; Hashemi, H. Research article: Study of the bioremediation of atrazine under variable carbon and nitrogen sources by mixed bacterial consortium isolated from corn field soil in farms province of Iran. J. Environ. Public Health. 2013, 1, 1–7.
  • Smn.cna.gob.mx. Servicio Meteorológico Nacional. 2016. Available at http://smn.cna.gob.mx/es (accessed Jun 2016).
  • Dof.gob.mx. DOF - Diario Oficial de la Federación. 2016. Available at http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002 (accessed Jun 2016).
  • Islas, M.; Villagómez, J.R.; Madariaga, A.; Castro, J.; González, C.; Acevedo, O. Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo Valley, Hidalgo, México. Trop. Subtrop. Agroecosystems. 2013, 16(2), 265–276.
  • Guigón, L.C.; Guerrero, P.V.; Vargas, A.F.; Carvajal, M.E.; Ávila, Q.G.D.; Bravo, L.; Ruocco, M.; Lanzuise, S.; Woo, S.; Lorito, M. Identificación molecular de cepas nativas de Trichoderma spp. su tasa de crecimieto in vitro y antagonismo contra hongos fitopatógenos. Rev. Mex. Fitopatol. 2010, 28, 87–96.
  • Agamez, R.E.Y.; Zapata, N.R.I.; Oviedo, Z.L.E.; Barrera, V.J.L. Evaluación de sustratos y procesos de fermentación sólida para la producción de esporas de Trichoderma sp. Rev. Colomb. Biotecnol. 2008, 10, 23–34.
  • Waksman, A. A method of counting the number of fungi in soil. J. Bacteriol. 1922, 7(3), 341–399.
  • Fragoeiro, S.; Magan, N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ. Microbiol. 2005, 7, 348–355.
  • Islas, M.; Villagómez, J.R.; Rodríguez, B.R.; Madariaga, A. Identification of an indigenous atrazine microbial consortium in beans (Phaseolus vulgaris L.) as a potential soil bioremediation. Agrotechnology. 2016, 5, 141.
  • Acosta, D.C.; Martinez, R.E. Diversity of rhizobia from nodulates of the leguminous trees Gliricidia sepium, a natural host of Rhizobium tropici. Arch. Microbiol. 2002, 178, 161–164.
  • Richardson, J.S.; Hynes, M.F.; Oresnik, I.J. A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J. Bacteriol. 2004, 186, 8433–8442.
  • Ibiene, A.A.; Orji, F.A.; Ezidi, C.O.; Ngwobia, C.L. Bioremediation of hydrocarbon contaminated soil in the niger delta using spent mushroom compost and other organic wastes. Niger. J. Agric. Food Environ. 2011, 7(3), 1–7.
  • Gopi, V.; Upgade, A.; Soundararajan, N. Bioremediation potential of individual and consortium non-adapted fungal strains on Azo dye containing textile effluent. Adv. Appl. Sci. Res. 2012, 3, 303–311.
  • Maldonado, C.E.; Rivera, C.M.C.; Izquierdo, R.F.; Palma, L.D.J. Efectos de rizósfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Univ. Cienc., Trópico Húmedo. 2010, 26(2), 121–136.
  • Barnett, H.L.; Hunter, B. Illustrated General of Imperfect Fungi. APS Press: St. Paul, MN, 2006; 92–112.
  • Fuentes, D.G.; Ferrera, C.R. Ecología de la raíz. In Sociedad Mexicana de Fitopatología, Obregón, A.C. Cd., Ed. Sociedad Mexicana de Fitopatología: Sonora, México, 2007, 2–20.
  • Chaudhary, K.S.; Inouhe, M.; Rai, N.M.U.; Mishra, K.; Gupta, K.D. Inoculation of Rhizobium (VR-1 and VA-1) induces an increasing growth and metal accumulation potential in Vigna radiata and Vigna angularis L. growing under fly-ash. Ecol. Eng. 2011, 37(8), 1254–1257.
  • Chan, C.; Heredia-Abarca, G.; Rodriguez-Vazquez, R. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J. Environ. Sci. Health Part B-Pesticides Food Contam. Agric. Wastes. 2016, 51(5), 298–308.
  • Schmoll, M.; Schuster, A. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 2010, 87(3), 787–799.
  • Hoyos, C.L.M.; Orduz, S.; Bissett, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control. 2009, 51, 409–416.
  • Harman, G.E.; Lorito, M.; Lynch, J.M. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv. Appl. Microbiol. 2004, 56, 330–331.
  • Silar, P.; Dairou, J.; Cocaign, A.; Busi, F.; Rodrigues-Lima, F.; Dupret, J.M. Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants. Nat. Rev. Microbiol. 2011, 9, 477.
  • Mnasri, B.; Fatma, F.; Trabelsi, M.; Aouani, M.E.; Mhamdi, R. Rhizobium gallicum as an efficient symbiont for bean cultivation. Agron. Sustainable Dev. 2007, 27, 331–336.
  • Krishnan, B.H.; Bennett, J. Rhizobium-legume symbioses: Molecular signals elaborated by rhizobia that are important for nodulation. In Plant-Associated Bacteria, Gnanamanickam, S., Ed. Springer: The Netherlands, 2007; 57–100.
  • Kolombet, V.L.; Zhigletsova, K.S.; Kosareva, I.N.; Bystrova, V.E.; Derbyshev, V.V.; Krasnova, P.S.; Schisler, D. Development of an extended shelf-life, liquid formulation of the biofungicide Trichoderma asperellum. World J. Microbiol. Biotechnol. 2008, 24, 123–131.
  • Chávez, S.; Álvarez, R. Ecofisiología de seis variedades de frijol bajo las condiciones climáticas de la Región Lagunera. Rev. Mex. Cienc. Agrícolas. 2012, 3, 299–309.
  • Ramdas, G.K.; Sims, G.S. Biostimulation for the enhanced degradation of herbicides in soil. Appl. Environ. Soil Sci. 2011, 10.
  • Mondragón, H.; Ruiz, O.N.; Talbya, A.; Juárez, R.C.; Curiel, Q.E.; Galíndez, M.J. Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J. Ind. Microbiol. Biotechnol. 2008, 35(7), 767–776.
  • Przybulewska, K.; Sienicka, K. Decomposition of atrazine by microorganism isolated from long-term herbicide experiment soil. Ecol. Chem. Endeng. 2008, 15, 501–511.
  • Kaufman, D.D; Blake, A. Degradation of atrazine by soil fungi. Soil Biol. Biochem. 1970, 2(2), 73–80.
  • Kumar, P.R.; Kumar, D.M.A. Effect of various environmental parameters on biosorptive removal of atrazine from water environment. Int. J. Environ. Sci. Dev. 2012, 3(3), 289–293.
  • Lima, P.D.; Viana, P.; André, S.; Chelinho, S.; Costa, C.; Ribeiro, R.; Sousa, J.P.; Fialho, A.M.; Viegas, C.A. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bio augmentation and bio stimulation approaches. Chemosphere. 2009, 74, 187–192.
  • Govantes, F.; Porrúa, O.; García, G. V.; Santero, E. Atrazine biodegradation in the lab and in the field: Enzymatic activities and gene regulation. Microb. Biotechnol. 2009, 2, 178–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.