Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 5
351
Views
33
CrossRef citations to date
0
Altmetric
Articles

Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials

, , &
Pages 290-297 | Received 13 Sep 2017, Accepted 06 Dec 2017, Published online: 16 Jan 2018

References

  • Khah, A.M.; Ansari, R. Activated charcoal: preparation, characterization and applications: A review article. Int. J. Chem. Technol. Res. 2009, 1, 859–864.
  • Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. doi:10.1016/j.cej.2015.08.014.
  • Hiremath, M. N.; Shivayogimath, C. B.; Shivalingappa, S. N. Preparation and characterization of granular activated carbon from corn cob by KOH activation. Int. J. Res. Chem. Environ. 2012, 2, 84–87.
  • Gonzalez, J. F.; Roman, S.; Encinar, J. M.; Martinez, G. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J. Anal. Appl. Pyrol. 2009, 85, 134–141. doi:10.1016/j.jaap.2008.11.035.
  • Orkun, Y.; Karatepe, N.; Yavuz, R. Influence of temperature and impregnation ratio of H3PO4 on the production of activated carbon from hazelnut shell. Acta Phys. Pol. A. 2012, 121, 277–280. doi:10.12693/APhysPolA.121.277.
  • Olafadehan, O. A.; Jinadu, O. W.; Salami, L.; Popoola, O. T. Treatment of brewery waste water effluent using activated carbon prepared from coconut shell. Int. J. Appl. Sci. Technol. 2012, 2, 165–178.
  • Idris, S.; Iyaka, Y. A.; Dauda, B. E. N.; Ndamitso, M. M.; Umar, M. T. Kinetic study of utilizing ground nut shell as an adsorbent in removing chromium and nickel from dye effluent. Am. Chem. Sci. J. 2012, 2, 12–24. doi:10.9734/ACSJ/2012/908.
  • Tan, I. A. W.; Ahmad, A. L.; Hameed, B. H. Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J. Hazard Mater. 2008, 153, 709–717. doi:10.1016/j.jhazmat.2007.09.014.
  • Lua, A. C.; Yang, T. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J. Colloid. Interf. Sci. 2005, 290, 505–513. doi:10.1016/j.jcis.2005.04.063.
  • Demiral, H.; Demiral, I.; Tumsek, F.; Karabacakoglu, B. Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. Surf. Interface Anal. 2008, 40, 616–619. doi:10.1002/sia.2631.
  • Chowdhury, Z. Z.; Zain, S. M.; Khan, R. A.; Ashraf, M. A. Preparation, characterization and adsorption performance of the KOH–activated carbons derived from kenaf fiber for lead (II) removal from waste water. Sci. Res. Essays. 2011, 6, 6185–6196.
  • Ademiluyi, F. T.; Amadi, S. A.; Amakama, J. N. Adsorption and treatment of organic contaminants using activated carbon from waste nigerian bamboo. J. Appl. Sci. Environ. Manage. 2011, 13, 39–47.
  • Yalcin, N.; Sevinc, V. Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon. 2000, 38, 1943–1945. doi:10.1016/S0008-6223(00)00029-4.
  • Chen, C. X.; Huang, B.; Li, T.; Wu, G. F. Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing. BioResources. 2012, 7, 5109–5116. doi:10.15376/biores.7.4.5109-5116.
  • von Stackelberg, K. J. A systematic review of carcinogenic outcomes and potential mechanisms from exposure to 2,4-D and MCPA in the environment. Toxicol. 2013, 2013, 371610.
  • De Martino, A.; Iorio, M.; Xing, B.; Capasso, R. Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Adv. 2012, 2, 5693–5700. doi:10.1039/c2ra00038e.
  • Kuśmierek, K.; Szala, M.; Świątkowski, A. Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solution on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng. 2016, 63, 371–378. doi:10.1016/j.jtice.2016.03.036.
  • Liu, W.; Yang, Q.; Yang, Z.; Wang, W. Adsorption of 2,4-D on magnetic graphene and mechanism study. Colloids Surf. A. 2016, 509, 367–375. doi:10.1016/j.colsurfa.2016.09.039.
  • Aksu, Z.; Kabasakal, E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol. 2004, 35, 223–240. doi:10.1016/S1383-5866(03)00144-8.
  • Hameed, B. H.; Salman, J. M.; Ahmad, A. L. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 2009, 163, 121–126. doi:10.1016/j.jhazmat.2008.06.069.
  • Salman, J. M.; Hameed, B. H. Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination. 2010, 256, 129–135. doi:10.1016/j.desal.2010.02.002.
  • Njoku, V. O.; Hameed, B. H. Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. Chem. Eng. J. 2011, 173, 391–399. doi:10.1016/j.cej.2011.07.075.
  • Gimeno, O.; Plucinski, P.; Kolaczkowski, S. T. Removal of the herbicide MCPA by commercial activated carbons: Equilibrium, kinetics, and reversibility. Ind. Eng. Chem. Res. 2003, 42, 1076–1086. doi:10.1021/ie020424x.
  • Kim, T. Y.; Park, S. S.; Kim, S. J.; Cho, S. Y. Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption. 2008, 14, 611–619. doi:10.1007/s10450-008-9129-6.
  • Ignatowicz, K. Selection of sorbent for removing pesticides during water treatment. J. Hazard. Mater. 2009, 169, 953–957. doi:10.1016/j.jhazmat.2009.04.061.
  • Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Swiatkowski, A.; Tarasiuk, B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. doi:10.1007/s10973-010-0840-7.
  • Ocampo-Pérez, R.; Abdel daiem, M. M.; Rivera-Utrilla, J.; Méndez-Díaz, J. D.; Sánchez-Polo, M. Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J. Colloid Interf. Sci. 2012, 385, 174–182. doi:10.1016/j.jcis.2012.07.004.
  • Kuśmierek, K.; Sankowska, M.; Świątkowski, A. Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon. Desalin. Water Treat. 2014, 52, 178–183. doi:10.1080/19443994.2013.780984.
  • Kaminski, W.; Kusmierek, K.; Swiatkowski, A. Sorption equilibrium prediction of competitive adsorption of herbicides 2,4-D and MCPA from aqueous solution on activated carbon using ANN. Adsorption. 2014, 20, 899–904. doi:10.1007/s10450-014-9633-9.
  • Abdel daiem, M. M.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Ocampo-Pérez, R. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Sci. Total Environ. 2015, 537, 335–342. doi:10.1016/j.scitotenv.2015.07.131.
  • Rowell, R. M., Pettersen R., Tshabalala M. A. Cell wall chemistry. In Handbook of Wood Chemistry and Wood Composites; Rowell R. M., Ed.; CRC Press: Boca Raton, London, New York, Washington, 2013; 34–72.
  • Fengel, D.; Wegener, D. Wood - Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, New York, 1989; 26–65.
  • Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994, 32, 759–769. doi:10.1016/0008-6223(94)90031-0.
  • Lagergren, S. Theorie der sogenannten adsorption geloester stoffe. Vetenskapsakad Handl. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-second-order model for sorption processes. Process Biochem. 1999, 34, 451–465. doi:10.1016/S0032-9592(98)00112-5.
  • Lorenc-Grabowska, E.; Diez, M. A.; Gryglewicz, G. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interf. Sci. 2016, 469, 205–212. doi:10.1016/j.jcis.2016.02.007.
  • Freundlich, H. M. F. Über die adsorption in lösungen. Z. Phys. Chem. 1906, 57, 385–470.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. doi:10.1021/ja02268a002.
  • Weber, T. W.; Chakravorti, R. K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. doi:10.1002/aic.690200204.
  • Yin C. Y.; Aroua M. K.; Daud W. M. A. W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 2007, 52, 403–415. doi:10.1016/j.seppur.2006.06.009.
  • Bhatnagar A.; Hogland W.; Marques M.; Sillanpaa M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. doi:10.1016/j.cej.2012.12.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.