Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 7
273
Views
24
CrossRef citations to date
0
Altmetric
Articles

Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples

, &
Pages 434-440 | Received 14 Nov 2017, Accepted 31 Jan 2018, Published online: 22 Feb 2018

References

  • Zhou, Q.; Zhi, F. Use of TiO2 Nanotube Arrays as the Adsorbents for Preconcentration of Triazine Herbicides in Environmental Water Samples Prior to Determination by High Performance Liquid Chromatography. Anal. Methods 2015, 7, 3277–3282. DOI: 10.1039/C4AY03012E.
  • Morales-Perez, A. A.; Arias, C.; Ramírez-Zamora, R. M. Removal of Atrazine from Water Using an Iron Photo Catalyst Supported on Activated Carbon. Adsorption 2016, 22, 49–58. DOI: 10.1007/s10450-015-9739-8.
  • Andrade, F. N.; Nazário, C. E. D; Neto, A. J. S.; Lanças, F. M. Development of an On-Line Molecularly Imprinted Solid Phase Extraction by Liquid Chromatography-Mass Spectrometry for Triazine Analysis in Corn Samples. Anal. Methods 2016, 8, 1181–1186. DOI: 10.1039/C5AY02986D.
  • Nousiainen, A. O.; Björklöf, K.; Sagarkar, S.; Nielsen, J. L.; Kapley, A.; Jørgensen, K. S. Bioremediation Strategies for Removal of Residual Atrazine in the Boreal Groundwater Zone. App. Microbiol. Biotechnol. 2015, 99, 10249–10259. DOI: 10.1007/s00253-015-6828-2.
  • Liyuan, Z.; Yu, R.; Wang, Z.; Li, N.; Zhang, H.; Yu, A. Determination of Triazine Herbicides in Vegetables by Ionic Liquid Foam Floatation Solid Phase Extraction High Performance Liquid Chromatography. J. Chromatogr. B 2014, 953–954, 132–137. DOI: 10.1016/j.jchromb.2014.02.011.
  • Ahmadi-Jouibari, T.; Pasdar, Y.; Pirsaheb, M.; Fattahi, N. Continuous Sample Drop Flow-Microextraction Followed by High Performance Liquid Chromatography for Determination of Triazine Herbicides from Fruit Juices. Anal. Methods 2017, 9, 980–985. DOI: 10.1039/C6AY02839J.
  • Zhou, T.; Ding, J.; Ni L.; Yu, J.; Li, H.; Ding, H.; Chen, Y.; Ding, L. Preparation of Magnetic Superhydrophilic Molecularly Imprinted Resins for Detection of Triazines in Aqueous Samples. J. Chromatogr. A 2017, 1497, 38–46. DOI: 10.1016/j.chroma.2017.03.069.
  • Yang, H.; Wei, H.; Hu, L.; Liu, H.; Yang, L.; Au, C.; Yi, B. Mechanism for the Photocatalytic Transformation of S-Triazine Herbicides by OH Radicals Over TiO2. Chem. Eng. J. 2016, 300, 209–216. DOI: 10.1016/j.cej.2016.04.099.
  • U.S. Environmental Protection Agency. Federal Register, 2009, https://www.gpo.gov/fdsys/pkg/FR-2009-04-15/pdf/E9-8709.pdf. (accessed June 2017).
  • Liu, X.; Shen, Z.; Wang, P.; Liu, C.; Zhou, Z.; Liu, D. Effervescence Assisted On-Site Liquid Phase Microextraction for the Determination of Five Triazine Herbicides in Water. J. Chromatogr. A 2014, 1371, 58–64. DOI: 10.1016/j.chroma.2014.10.068.
  • Nagaraju, D.; Huang, S.D. Determination of Triazine Herbicides in Aqueous Samples by Dispersive Liquid–Liquid Microextraction with Gas Chromatography–Ion Trap Mass Spectrometry. J. Chromatogr. A 2007, 1161, 89–97. DOI: 10.1016/j.chroma.2007.05.065.
  • U.S. Environmental Protection Agency. List of Contaminants and Their MCLs, 2015, https://safewater.zendesk.com/hc/en-us/articles/211401248-4-What-are-EPA-s-drinking-water-regulations-for-simazine-/ and https://safewater.zendesk.com/hc/en-us/articles/212077787-4-What-are-EPA-s-drinking-water-regulations-for-atrazine-/, (accessed June 2017).
  • Beceiro-González, E.; González-Castro, M. J.; Pouso-Blanco, R.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. A Simple Method for Simultaneous Determination of Nine Triazines in Drinking Water. Green Chem. Lett. Rev. 2014, 7, 271–277. DOI: 10.1080/17518253.2014.944940.
  • National Council of Environment. Brazil (Conselho Nacional do Meio Ambiente), Resolution 357/2005, March 17th, 2005.
  • Sorouraddin, S. M.; Mogaddam, M. R. A. Development of Molecularly Imprinted-Solid Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction for Selective Extraction and Preconcentration of Triazine Herbicides from Aqueous Samples. J. Iran Chem. Soc. 2016, 13, 1093–1104. DOI: 10.1007/s13738-016-0823-0.
  • Sun, S.; Li, Y.; Lv, P.; Punamiya, P.; Sarkar, D.; Dan, Y.; Ma, J.; Zheng, Y. Determination of Prometryn in Vetiver Grass and Water Using Gas Chromatography–Nitrogen Chemiluminescence Detection. J. Chromatogr. Sci. 2016, 54, 97–102.
  • Safari, M.; Yamini, Y.; Tahmasebi, E.; Ebrahimpour, B. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim. Acta 2016, 183, 203–210. DOI: 10.1007/s00604-015-1607-4.
  • Andrade, F. N.; Ide, A. H.; Neng, N. R.; Lanças, F. M.; Nogueira, J. M. F. Determination of Trace Levels of Triazines in Corn Matrices by Bar Adsorptive Microextraction with a Molecularly Imprinted Polymer. J. Sep. Sci. 2016, 39, 756–761. DOI: 10.1002/jssc.201501101.
  • Fernandez-Amado, M.; Prieto-Blanco, M. C.; Lopez-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Strengths and Weaknesses of In-Tube Solid-Phase Microextraction: A Scoping Review. Anal. Chim. Acta 2016, 906, 41–57. DOI: 10.1016/j.aca.2015.12.007.
  • Kataoka, H.; Mizuno, K.; Oda, E.; Saito, A. Determination of the Oxidative Stress Biomarker Urinary 8-Hydroxy-2-Deoxyguanosine by Automated On-Line In-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2016, 1019, 140–146. DOI: 10.1016/j.jchromb.2015.08.028.
  • Bu, Y.; Feng, J.; Sun, M.; Zhou, C.; Luo, C. Facile and Efficient Poly(Ethylene Terephthalate) Fibers-In-Tube for Online Solid-Phase Microextraction Towards Polycyclic Aromatic Hydrocarbons. Anal. Bional. Chem. 2016, 408, 4871–4882. DOI: 10.1007/s00216-016-9567-z.
  • Ishizaki, A.; Uemura, A.; Kataoka, H. A Sensitive Method to Determine Melatonin in Saliva by Automated Online In-Tube Solid-Phase Microextraction Coupled with Stable Isotopedilution Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2017, 9, 3134–3140. DOI: 10.1039/C7AY00622E.
  • Lima, M. M.; Vieira, A. C.; Martins, I.; Boralli, V. B.; Borges, K. B.; Figueiredo, E. C. On-Line Restricted Access Molecularly Imprinted Solid Phase Extraction of Ivermectin in Meat Samples Followed by HPLC-UV Analysis. Food Chem. 2016, 197, 7–13. DOI: 10.1016/j.foodchem.2015.10.082.
  • Sun, M.; Feng, J.; Bu, Y.; Luo, C. Highly Sensitive Copper Fiber-In-Tube Solid-Phase Microextraction for Online Selective Analysis of Polycyclic Aromatic Hydrocarbons Coupled with high Performance Liquid Chromatography. J. Chromatogr. A 2015, 1408, 41–48. DOI: 10.1016/j.chroma.2015.07.024.
  • Liu, W. L.; Lirio, S.; Yang, Y.; Wu, L. T.; Hsiao, S. Y.; Huang, H. Y. A Poly(Alkyl Methacrylate-Divinylbenzene-Vinylbenzyltrimethylammonium Chloride) Monolithic Column for Solid-Phasemicroextraction. J. Chromatogr. A 2015, 1395, 32–40. DOI: 10.1016/j.chroma.2015.03.066.
  • Currivan, S.; Macak, J. M.; Jandera, P. Polymethacrylate Monolithic Columns for Hydrophilic Interaction Liquid Chromatography Prepared Using a Secondary Surface Polymerization. J. Chromatogr. A 2015, 1402, 82–93. DOI: 10.1016/j.chroma.2015.05.016.
  • Tang, Y.; Lan, J.; Gao, X.; Liu, X.; Zhang, D.; Wei, L.; Gao, Z.; Li, J. Determination of Clenbuterol in Pork and Potable Water Samples by Molecularly Imprinted Polymer Through the Use of Covalent Imprinting Method. Food Chem. 2016, 190, 952–959. DOI: 10.1016/j.foodchem.2015.06.067.
  • Bompart, M.; Goto, A.; Wattraint, O.; Sarazin, C.; Gonzato, Y. T. C.; Haupt, K. Molecularly Imprinted Polymers by Reversible Chain Transfer Catalyzed Polymerization. Polymer 2015, 78, 31–36. DOI: 10.1016/j.polymer.2015.09.060.
  • Wang, F.; Guan, Y.; Zhang, S.; Xia, Y. Hydrophilic Modification of Silica–Titania Mesoporous Materials as Restricted-Access Matrix Adsorbents for Enrichment of Phosphopeptides. J. Chromatogr. A 2012, 1246, 76–83. DOI: 10.1016/j.chroma.2012.02.050.
  • Souza, I. D.; Melo, L. P.; Jardim, I. C. S. F.; Monteiro, J. C. S.; Nakano, A. M. S.; Queiroz, M. E. C. Selective Molecularly Imprinted Polymer Combined with Restricted Access Material for In-Tube SPME/UHPLC-MS/MS of Parabens in Breast Milk Samples. Anal. Chim. Acta 2016, 932, 49–59. DOI: 10.1016/j.aca.2016.05.027.
  • Yu, L.; Xu, H. Development of a Novel Graphene/Polyaniline Electrodeposited Coating for On-Line In-Tube Solid Phase Microextraction of Aldehydes in Human Exhaled Breath Condensate. J. Chromatogr. A 2015, 1395, 23–31. DOI: 10.1016/j.chroma.2015.03.058.
  • Asiabi, H.; Yamini, Y.; Seidi, S.; Shamsayei, M.; Safari, M.; Rezaei, F. On-Line Electrochemically Controlled In-Tube Solid Phase Microextraction of Inorganic Selenium Followed by Hydride Generation Atomic Absorption Spectrometry. Anal. Chim. Acta 2016, 922, 37–47. DOI: 10.1016/j.aca.2016.04.001.
  • Ahmadi, S. H.; Manbohi, A.; Heydar, K. T. Electrochemically Controlled In-Tube Solid Phase Microextraction. Anal. Chim. Acta 2015, 853, 335–341. DOI: 10.1016/j.aca.2014.10.040.
  • Wang, T. T.; Chen, Y. H.; Ma, J. F.; Hu, M. J.; Li, Y.; Fang, J. H.; Gao, H. Q. A Novel Ionic Liquid-Modified Organic-Polymer Monolith as the Sorbent for In-Tube Solid-Phase Microextraction of Acidic Food Additives. Anal. Bioanal. Chem. 2014, 406, 4955–4963. DOI: 10.1007/s00216-014-7923-4.
  • Shearrow, A. M.; Harris, G. A.; Fang, L.; Sekhar, P. K.; Nguyen, L. T.; Turner, E. B.; Bhansali, S.; Malik, A. Ionic Liquid-Mediated Sol–Gel Coatings for Capillary Microextraction. J. Chromatogr. A 2009, 1216, 5449–5458. DOI: 10.1016/j.chroma.2009.04.093.
  • González-Fuenzalida, R. A.; López-García, E.; Moliner-Martínez, Y.; Campíns-Falcó, P. Adsorbent Phases with Nanomaterials for In-Tube Solid-Phase Microextraction Coupled On-Line to Liquid Nanochromatography. J. Chromatogr. A 2016, 1432, 17–25. DOI: 10.1016/j.chroma.2016.01.009.
  • Jornet-Martínez, N.; Serra-Mora, P.; Moliner-Martínez, Y.; Herráez-Hernández, R.; Campíns-Falcó, P. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography. Chromatogr. 2015, 2, 515–528. DOI: 10.3390/chromatography2030515.
  • Fumes, B. H.; Silva, M. R.; Andrade, F. N.; Nazário, C. R. D.; Lanças, F. M. Recent Advances and Future Trends in New Materials for Sample Preparation. TrAC, Trends Anal. Chem. 2015, 71, 9–25. DOI: 10.1016/j.trac.2015.04.011.
  • Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G. Graphene and Graphene Oxide Sheets Supported On Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. Angew. Chem. Int. Ed. 2011, 50, 5913–5917. DOI: 10.1002/anie.201007138.
  • Speltini, A.; Sturini, M.; Maraschi, F.; Consoli, L.; Zeffiro, A.; Profumo, A. Graphene-Derivatized Silica as an Efficient Solid-Phase Extraction Sorbent for Pre-Concentration of Fluoroquinolones from Water Followed by Liquid-Chromatography Fluorescence Detection. J. Chromatogr. A 2015, 1379, 9–15. DOI: 10.1016/j.chroma.2014.12.047.
  • Shi, R.; Yan, L.; Xu, T.; Liu, D.; Zhu, Y.; Zhou, J. Graphene Oxide Bound Silica for Solid-Phase Extraction of 14 Polycyclic Aromatic Hydrocarbons in Mainstream Cigarette Smoke. J. Chromatogr. A 2015, 1375, 1–7. DOI: 10.1016/j.chroma.2014.11.057.
  • Hummers, W. S.; Offeman. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Nazario, C. E. D.; Silva, M. R.; Franco, M. S.; Lanças, F. M. Evolution in Miniaturized Column Liquid Chromatography Instrumentation and Applications: An Overview. J. Chromatogr. A 2015, 1421, 18–37. DOI: 10.1016/j.chroma.2015.08.051.
  • Validation of analytical procedures. text and methodology Q2 (R1). International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, Current step 4 version, November, 2005.
  • Yang, S.; Feng, X.; Ivanovici, S.; Mullen, K. Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411. DOI: 10.1002/anie.201003485.
  • Fumes, B. H.; Lanças, F. M. Use of Graphene Supported on Aminopropyl Silica for Microextraction of Parabens from Water Samples. J. Chromatogr. A 2017, 1487, 64–71. DOI: 10.1016/j.chroma.2017.01.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.