Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 10
115
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Dissipation of terbuthylazine, metolachlor, and mesotrione in soils with contrasting texture

, , , &
Pages 661-668 | Received 23 Dec 2017, Accepted 20 Apr 2018, Published online: 29 May 2018

References

  • Wu, X.; Long, Y.; Li, J.; Li, R.; Liu, R.; Li, M. Degradation of Metolachlor in Tobacco Field Soil. Soil Sediment Contam. An Int. J. 2015, 24(4), 398–410.
  • Fenoll, J.; Hellín, P.; Flores, P.; Lacasa, A.; Navarro, S. Solarization and Biosolarization Using Organic Wastes for the Bioremediation of Soil Polluted with Terbuthylazine and Linuron Residues. J. Environ. Manage. 2014, 143, 106–112. DOI: 10.1016/j.jenvman.2014.05.007.
  • Long, Y.H.; Li, R.Y.; Wu, X.M. Degradation of S-Metolachlor in Soil as Affected by Environmental Factors. J. Soil Sci. Plant Nutr. 2014, 14(1), 189–198.
  • Dyson, J.S.; Beulke, S.; Brown, C.D.; Lane, M.C. G. Adsorption and Degradation of the Weak Acid Mesotrione in Soil and Environmental Fate Implications. J. Environ. Qual. 2002, 31, 613–618. DOI: 10.2134/jeq2002.6130.
  • Rice, P.J.; Anderson, T.A; Coats, J.R. Degradation and Persistence of Metolachlor in Soil: Effects of Concentration, Soil Moisture, Soil Depth, and Sterilization. Environ. Toxicol. Chem. 2002, 21(12), 2640–8. DOI: 10.1002/etc.5620211216.
  • Walker, A.; Brown, P.A.; Mathews, P.R. Persistence and Phytotoxicity of Napropamide Residues in Soil. Ann. Appl. Biol. 1985, 106, 323–333. DOI: 10.1111/j.1744-7348.1985.tb03122.x.
  • Walker, A.; Thompson, J.A. The Degradation of Simazine, Linuron and Propyzamide in Different Soils. Weed Res. 1977, 17, 399–405. DOI: 10.1111/j.1365-3180.1977.tb00500.x.
  • Walker, A.; Allen, R. Influence of Soil And Environmental Factors on Pesticide Persistence; British Crop Protection Council: Thornton Heath, UK, 1984, pp 89–100.
  • Lehmann, R.G.; Miller, J.R.; Fontaine, D.D.; Laskowski, D.A.; Hunter, J.H.; Cordes, R.C. Degradation of a Sulfonamide Herbicide as a Function of Soil Sorption. Weed Res. 1992, 32, 197–205. DOI: 10.1111/j.1365-3180.1992.tb01878.x.
  • Ma, Q.L.; Gan, J.; Papiernik, S.K.; Becker, J.O.; Yates, S. R. Degradation of Soil Fumigants as Affected by Initial Concentration and Temperature. J. Environ. Qual. 2001, 30((4)), 1278–1286. DOI: 10.2134/jeq2001.3041278x.
  • O'Connell, P.J.; Harms, C.T.; Allen, J.R.F. Metolachlor, S-Metolachlor and their Role Within Sustainable Weed Management. Crop Prot. 1998, 17(3), 207–2012. DOI: 10.1016/S0261-2194(98)80011-2.
  • Shelton, D.R.; Parkin, T.B. Effect of Moisture on Sorption and Biodegradation of Carbofuran in Soil. J. Agric. Food Chem. 1991, 39(11), 2063–2060. DOI: 10.1021/jf00011a036.
  • Taylor-Lovell, S.; Sims, G.K.; Wax, L.M. Effects of Moisture, Temperature, and Biological Activity on the Degradation of Isoxaflutole in Soil. J. Agric. Food Chem. 2002, 50(20), 5626–5633. DOI: 10.1021/jf011486l.
  • Wu, X.; Li, M.; Long, Y.; Liu, R. Effects of Adsorption on Degradation and Bioavailability of Metolachlor in Soil. Soil Sci. Plant Nutr. 2011, 11(3), 83–97.
  • Pinna, M.V.; Roggero, P.P.; Seddaiu, G.; Pusino, A. Soil Sorption and Leaching of Active Ingredients of Lumax(R) Under Mineral or Organic Fertilization. Chemosphere. 2014, 111, 372–378. DOI: 10.1016/j.chemosphere.2014.03.124.
  • ISPRA. National pesticides report on surface and groundwater in 2013–2014: regional scale (Italian); 2016.
  • ISPRA. National pesticides report on surface and groundwater in 2013–2014 (Italian); 2016.
  • Baćmaga, M.; Wyszkowska, J.; Borowik, A.; Tomkiel, M.; Kucharski, J. Response of Fungi, β-Glucosidase, and Arylsulfatase to Soil Contamination by Alister Grande 190 OD, Fuego 500 SC, and Lumax 537.5 SE Herbicides. Polish J. Environ. Stud. 2014, 23(1), 19–25.
  • GIRE. Herbicides Classification (Italian). http://gire.mlib.cnr.it/documentsSource/pubblicazioni/Classificazione erbicidi 15-Maggio-2017.pdf. (accessed Mar. 2017).
  • Mitchell, G.; Bartlett, D.; Fraser, T.; Hawkes, T.; Holt, D.; Townson, J.; Wichert, R. Mesotrione: A New Selective Herbicide for Use in Maize. Pest Manag Sci. 2001, 57, 120–128. DOI: 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E.
  • Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, 2nd Ed.; Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Eds.; Agronomy; Soil Science Society of America, Inc.: Madison, Wisconsin, USA, 1986, 9, 383–411.
  • Sørensen S. Enzymstudien Ii: Uber die Messung und die Bedeutung der Wasserstoffionenkonzentration Bei Enzymatischen Prozessen. Biochem. Zeit. 1909, 21, 131–200.
  • Walkley, A.; Black, I.A. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. DOI: 10.1097/00010694-193401000-00003.
  • Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chem. 1883, 22, 366–382. DOI: 10.1007/BF01338151.
  • Footprint. PPDB. http://www.eu-footprint.org/ppdb.html (accessed Mar. 2017).
  • Vasileiadis, V.P.; Veres, A.; Loddo, D.; Masin, R.; Sattin, M.; Furlan, L. Careful Choice of Insecticides in Integrated Pest Management Strategies Against Ostrinia Nubilalis (Hübner) in Maize Conserves Orius spp. in the Field. Crop Prot. 2017, 97, 45–51. DOI: 10.1016/j.cropro.2016.11.003.
  • Barchanska, H.; Rusek, M.; Szatkowska, A. New Procedures for Simultaneous Determination of Mesotrione and Atrazine in Water and Soil. Comparison of the Degradation Processes of Mesotrione and Atrazine. Environ. Monit. Assess. 2012, 184, 321–334. DOI: 10.1007/s10661-011-1970-5.
  • Stipičević, S.; Galzina, N.; Udiković-Kolić, N.; Jurina, T.; Mendaš, G.; Dvoršćak, M.; Petrić, I.; Barić, K.; Drevenkar, V. Distribution of Terbuthylazine and Atrazine Residues in Crop-Cultivated Soil: The Effect of Herbicide Application Rate on Herbicide Persistence. Geoderma. 2015, 259–260, 300–309. DOI: 10.1016/j.geoderma.2015.06.018.
  • Barra Caracciolo, A.; Giuliano, G.; Grenni, P.; Cremisini, C.; Ciccoli, R.; Ubaldi, C. Effect of Urea on Degradation of Terbuthylazine in Soil. Environ. Toxicol. Chem. 2005, 24(5), 1035–1040. DOI: 10.1897/04-253R.1.
  • Furmidge, C.G.L.; Osgerby, J.M. Persistence of Herbicides in Soil. J. Sci. Food Agric. 1967, 18(7), 269–273. DOI: 10.1002/jsfa.2740180701.
  • Sahid, I.B.; Teoh, S.S. Persistence of Terbuthylazine in Soils. Bull. Environ. Contam. Toxicol. 1994, 52(2), 226–230. DOI: 10.1007/BF00198492.
  • Garrett, L.G.; Watt, M.S.; Rolando, C.A.; Pearce, S.H. Environmental Fate of Terbuthylazine and Hexazinone in a New Zealand Planted Forest Pumice Soil. For. Ecol. Manage. 2015, 337, 67–76. DOI: 10.1016/j.foreco.2014.10.028.
  • Six, J.; Conant, R.T.; Paul, E.a; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturatin of Soils. Plant Soil 2002, 241, 155–176. DOI: 10.1023/A:1016125726789.
  • Shea, P. Role of Humified Organic Matter in Herbicide Adsorption. Weed Technol. 1989, 31(1), 190–197. DOI: 10.1017/S0890037X00031614.
  • Choi, S.; Fermanian, T.W.; Spomer, L.A. Effect of Temperature, Moisture, and Soil Texture on Dcpa Degradation. Agron. J. 1988, 80, 108–113. DOI: 10.2134/agronj1988.00021962008000010024x.
  • Cabrera, A.; Cox, L.; Velarde, P.; Koskinen, W. C.; Cornejo, J. Fate of Diuron and Terbuthylazine in Soils Amended with Two-Phase Olive Oil Mill Waste. J. Agric. Food Chem. 2007, 55(12), 4828–4834. DOI: 10.1021/jf070525b.
  • Dousset, S.; Mouvet, C.; Schiavon, M. Degradation of [14 c]Terbuthylazine and [14 c]Atrazine in Laboratory Soil Microcosms. Pestic. Sci. 1997, 49(1), 9–16. DOI: 10.1002/(SICI)1096-9063(199701)49:1<9::AID-PS472>3.0.CO;2-F.
  • López-Piñeiro, A.; Albarrán, A.; Cabrera, D.; Peña, D.; Becerra, D. Environmental Fate of Terbuthylazine in Soils Amended with Fresh and Aged Final Residue of the Olive-Oil Extraction Process. Int. J. Environ. Res. 2012, 6(4), 933–944.
  • Su, W.; Hao, H.; Wu, R.; Xu, H.; Xue, F.; Lu, C. Degradation of Mesotrione Affected by Environmental Conditions. Bull. Environ. Contam. Toxicol. 2017, 98(2), 212–217. DOI: 10.1007/s00128-016-1970-9.
  • Dumas, E.; Giraudo, M.; Goujon, E.; Halma, M.; Knhili, E.; Stauffert, M.; Batisson, I.; Besse-Hoggan, P.; Bohatier, J.; Bouchard, P.; et al. Fate and Ecotoxicological Impact of New Generation Herbicides from the Triketone Family: An Overview to Assess the Environmental Risks. J. Hazard. Mater. 2016, 325, 136–156. DOI: 10.1016/j.jhazmat.2016.11.059.
  • Davis, A.M.; Pradolin, J. Precision Herbicide Application Technologies to Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System. J. Agric. Food Chem. 2016, 64(20), 4021–4028. DOI: 10.1021/acs.jafc.5b04987.
  • Emmi, L.; Gonzalez-De-Soto, M.; Pajares, G.; Gonzalez-De-Santos, P. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots. Sci. World J. 2014, 2014, 1–21. DOI: 10.1155/2014/404059.
  • Pérez-Ruìz, M.; Slaughter, D.C.; Fathallah, F.A.; Gliever, C. J.; Miller, B. J. Co-Robotic Intra-Row Weed Control System. Biosyst. Eng. 2014, 126, 45–55. DOI: 10.1016/j.biosystemseng.2014.07.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.