Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 12
298
Views
7
CrossRef citations to date
0
Altmetric
Articles

Growth, photosynthesis and removal responses of the cyanobacteria Chroococcus sp. to malathion and malaoxon

, , , &

References

  • Low, V.; Chen, C.; Lee, H.; Lim, P.; Leong, C.; Sofian-Azirun, M. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin. J. Med. Entomol. 2013, 50, 103–111.
  • Benítez, J.A.; Bárcenas, C. Patrones de uso de los plaguicidas en la zona costera del Golfo de México. EPOMEX Serie Científica 1996, 5, 155–167.
  • Newman, M.C.; Unger, M.A. Fundamentals of Ecotoxicology. CRC Press: Florida, USA, 2003; 458 pp.
  • Walker, C.; Sibly, R.; Hopkin, S.; Peakall, D. Principles of Ecotoxicology. CRC Press: Florida, USA, 2012; 315 pp.
  • Centro Panamericano de Ingeniería Sanitaria y Ciencias Ambientales-Organización Panamericana de la Salud. Curso de Autoinstrucción en Diagnóstico, Tratamiento y Prevención de Intoxicaciones agudas causadas por plaguicidas. Plaguicidas de tipo organofosforados y carbamatos. http://www.bvsde.paho.org/tutorial2/e/bienvenida.html. Accessed 16 December 2017.
  • Derbalah, A. Efficacy of some botanical extracts against Trogoderma granariumin wheat grains with toxicity evaluation. Sci. World J. 2012, 2012, 1–9.
  • Josse, R.; Sharanek, A.; Savary, C.; Guillouzo, A. Impact of isomalathion on malathion cytotoxicity and genotoxicity in human HepaRG cells. Chem. Biol. Interact. 2014, 209, 68–76.
  • Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G. Major pesticides are more toxic to human cells than their declared active principles. Biomed. Res. Int. 2014, 2014, 1–8.
  • Kjeldsen, L.; Ghisari, M.; Bonefeld-Jørgensen, E. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol. Appl. Pharmacol. 2013, 272, 453–464.
  • Karami-Mohajeri, S.; Hadian, M.; Fouladdel, S.; Azizi, E.; Ghahramani, M.; Hosseini, R.; Abdollahi, M. Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide. Hum. Exp. Toxicol. 2014, 33, 251–263.
  • Taxvig, C.; Hadrup, N.; Boberg, J.; Axelstad, M.; Bossi, R.; Bonefeld-Jørgensen, E.; Vinggaard, A. In vitro-in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicol. Appl. Pharmacol. 2013, 272, 757–766.
  • Lion, C.; Hedayatullah, M.; Charvy, C.; Vincent, S.; Briand, S.; Boileau, J.; Delmas, G.; Magnaud, G.; Desgranges, M.; Sentenac-Roumanou, H. Decontamination douce de toxiques organophosphores et soufres par quelques derives de l’eau oxygenee. Bull. Soc. Chim. Belges 2010, 103, 115–118.
  • Venkataraman, G. S.; Rajyalakshmi, B. Relative tolerance of nitrogen-fixing blue-green algae to pesticides. Indian J. Agric. Sci. 1972, 42, 119–121.
  • Pandey, K.; Kashyap, A. Differential sensitivity of three cyanobacteria to the rice field herbicide machete. J. Basic Microbiol. 1986, 26, 421–428.
  • Subramanian, G.; Sekar, S.; Sampoornam, S. Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int. Biodeterior. Biodegrad. 1994, 33, 129–143.
  • Ibrahim, W.; Karam, M.; El-Shahat, R.; Adway, A. Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed. Res. Int. 2014, 2014, 1–6.
  • Tiwari, B.; Chakraborty, S.; Srivastava, A.; Mishra, A. Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium Fischerella sp. Algal Res. 2017, 25, 285–296.
  • El-Bestawy, E.; El-Salam, A.; Mansy, A. Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int. Biodeterior. Biodegrad. 2007, 59, 180–192.
  • Agency for Toxic Substances and Disease Registry (ATSDR). https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id =522&tid =92. Accessed 2 December 2017.
  • Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Stanley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins: Philadelphia, 1994; 380–385 pp.
  • Rippka, R.; Stanier, R.; Deruelles, J.; Herdman, M.; Waterbury, J. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61.
  • United States of Environmental Protection Agency (EPA). Short term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. In Environmental Monitoring Systems Laboratory, 4th Ed.; Weber, C.I., Peltier, W.H., Norberg-King, T.J., Horning, W.B., Kessler, F.A., Menkedick, J.R., Neiheisel, T.W., Lewis, P.A., Klemm, D.J., Pickering, Q.H., Robinson, E.L., Lazorchak, J.M., Wymer, L.J., Freyberg, R.W., Eds.; EPA/600/4-89/001: Cincinnati, OH, USA, 2002; 335.
  • Sukenik, A.; Carmeli, Y.; Berner, T. Regulation of fatty acid composition by irradiance level in the Eustigmatophyte nannochloropsis sp. J. Phycol. 1989, 25, 686–692.
  • Arredondo-Vega, B.O.; Voltolina, D. Métodos y Herramientas Analíticas En La Evaluación De La Biomasa Microalgal. Baja California Sur: La Paz, México, 2007; 23–26 pp.
  • Vonshak, A. Spirulina Platensis (Arthrospira). Gunpowder Square: London. 2010; 205–211 pp.
  • Bajguz, A.; Godlewska-Zylkiewicz, B. Protective role of 20-hydroxyecdsone against lead stress in Chlorella vulgaris cultures. Phytochemistry 2004, 65, 711–720.
  • Pérez-Legaspi, I.; Ortega-Clemente, L.; Moha-León, J.; Ríos-Leal, E.; Gutiérrez, S.; Rubio-Franchini, I. Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. J. Environ. Sci. Health B 2016, 51, 103–106.
  • Ningthoujam, M.; Habib, K.; Bano, F.; Zutshi, S.; Fatma, T. Exogenous osmolytes suppresses the toxic effects on malathion on Anabaena variabilis. Ecotoxicol. Environ. Saf. 2013, 94, 21–27.
  • Chakraborty, S.; Tiwari, B.; Singh, S.S.; Srivastava, A.K.; Mishra, A.K. Differential physiological, oxidative and antioxidative responses of cyanobacterium Anabaena sphaerica to attenuate malathion pesticide toxicity. Bio. Agric. Biotechnol. 2017, 11, 56–63,
  • Ghadai, A.K.; Kumar, S.; Acharya, D.K. Bio-molecular assay of cyanobacteria on response to diazinon: an organophosphorus insecticide. Int. J. Chem. Res. 2010, 2, 20–24.
  • Kumar, S.; Habib, K.; Fatma, T. Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria. Sci. Total Environ. 2008, 403, 130–138.
  • Rioboo, C.; González, O.; Herrero, C.; Cid, A. Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat. Toxicol. 2002, 59, 225–235.
  • Yamamoto, Y.; Tsukada, H. Measurement of in situ specific growth rates of microcystis (cyanobacteria) from the frequency of dividing cells. J. Phycol. 2009, 45, 1003–1009.
  • Manikar, N.; Kumar, I.S.; Habib, K.; Fatma, T. Biochemical analysis of Anabaena variabilis exposed to malathion pesticide with special reference to oxidative stress and osmolytes. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 5403–5420.
  • Mostafa, F.; Helling, C. Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. J. Environ. Sci. Health B 2002, 37, 417–444.
  • Prasad, S.M.; Kumar, D.; Zeeshan, M. Growth, photosynthesis, active oxygen species and antioxidants responses of paddy field cyanobacterium Plectonema boryanum to endosulfan stress. J. Gen. Appl. Microbiol. 2005, 51, 115–123.
  • Cáceres, T.; Megharaj, M.; Naidu, R. Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol. 2008, 57, 643–646.
  • Singh, D.; Khattar, J.; Kaur, M.; Kaur, G.; Gupta, M.; Singh, Y. Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64. PLoS One 2013, 8, e53445
  • Zheng, Y.; Hwang, H. Effects of temperature and microorganisms on malathion transformation in river water. Bull. Environ. Contam. Toxicol. 2006, 76, 712–719.
  • Bavcon, K.; Černigoj, M.U.; Franko, M.; Trebše, P. Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion—products and toxicity studies. Water Res. 2007, 41, 4504–4514.
  • Adway, A.A.; Ibrahim, W.M.; Karam, M.A. Chlorpyrifos tolerance, utilization and its biodegradation by the cyanobacterium Nostoc muscorum. Int. J. Curr. Sci. Res. 2017, 3, 1156–1174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.