Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 12
246
Views
9
CrossRef citations to date
0
Altmetric
Articles

Identification and comprehensive evaluation of a novel biocontrol agent Bacillus atrophaeus JZB120050

, , , , , , , , & show all

References

  • Beneduzi, A.; Ambrosini, A.; Passaglia, L. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051.
  • Haidar, R.; Fermaud, M.; Calvo-Garrido, C.; Roudet, J.; Deschamps, A. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol. Mediterr. 2016, 55, 301–322.
  • Rabosto, X.; Carrau, M.; Paz, A.; Boido, E.; Dellacassa, E.; Carrau, F. Grapes and vineyard soils as sources of microorganisms for biological control of Botrytis cinerea. Am. J. Enol. Viticult. 2006, 57, 332–338.
  • On, A.; Wong, F.; Ko, Q.; Tweddell, R. J.; Antoun, H.; Avis, T. J. Antifungal effects of compost tea microorganisms on tomato pathogens. Biol. Control. 2015, 80, 63–69.
  • Toure, Y.; Ongena, M.; Jacques, P.; Guiro, A.; Thonart, P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 2004, 96, 1151–1160.
  • Liu, Y.; Chen, Z.; Ng, T. B.; Zhang, J.; Zhou, M.; Song, F.; Lu, F.; Liu, Y. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides. 2007, 28, 553–559.
  • Ji, S. H.; Paul, N. C.; Deng, J. X.; Kim, Y. S.; Yun, B. S.; Yu, S. H. Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology. 2013, 41, 234–242.
  • Liu, G. Q.; Kong, Y. Y.; Fan, Y. J.; Geng, C.; Peng, D. H.; Sun, M. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 2017, 249, 20–24.
  • Chakraborty, K.; Thilakan, B.; Raola, V. K. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. Phytochemistry. 2017, 142, 112–125.
  • Chakraborty, K.; Thilakan, B.; Raola, V. K.; Joy, M. Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae Papillosa. Food Chem. 2017, 218, 427–434.
  • Wise, C.; Novitsky, L.; Tsopmo, A.; Avis, T. J. Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12. J. Chem. Ecol. 2012, 38, 1521–1527.
  • Effmert, U.; Kalderas, J.; Warnke, R.; Piechulla, B. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 2012, 38, 665–703.
  • Ryu, C. M.; Farag, M. A.; Hu, C. H.; Reddy, M. S.; Kloepper, J. W.; Pare, P. W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004, 134, 1017–1026.
  • Gao, Z.; Zhang, B.; Liu, H.; Han, J.; Zhang, Y. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 2017, 105, 27–39.
  • Lee, K. Y.; Heo, K. R.; Choi, K. H.; Kong, H. G.; Nam, J.; Yi, Y. B.; Park, S. H.; Lee, S. W.; Moon, B. J. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 2009, 25, 344–351.
  • Liu, D.; Cai, J.; Xie, C. C.; Liu, C.; Chen, Y. H. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis Subsp Colmeri, and its biocontrol potential. Enzyme Microb. Technol. 2010, 46, 252–256.
  • Xu, T.; Zhu, T. H.; Li, S. J. Beta-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World J. Microbiol. Biotechnol. 2016, 32, 26.
  • Alamri, S. A. Enhancing the efficiency of the bioagent Bacillus subtilis JF419701 against soil-borne phytopathogens by increasing the productivity of fungal cell wall degrading enzymes. Arch. Phytopathol. Plant Protect. 2015, 48, 159–170.
  • Vijay Kumar, E.; Srijana, M.; Kiran Kumar, K.; Harikrishna, N.; Reddy, G. A novel serine alkaline protease from Bacillus altitudinis GVC11 and its application as a dehairing agent. Bioprocess Biosyst. Eng. 2011, 34, 403–409.
  • Tanaka, K.; Fukuda, M.; Amaki, Y.; Sakaguchi, T.; Inai, K.; Ishihara, A.; Nakajima, H. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery Mildew disease. Pest Manag. Sci. 2017, 73, 2419–2428.
  • Zhang, X. Y.; Li, B. Q.; Wang, Y.; Guo, Q. G.; Lu, X. Y.; Li, S. Z.; Ma, P. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 2013, 97, 9525–9534.
  • Fan, H. Y.; Ru, J. J.; Zhang, Y. Y.; Wang, Q.; Li, Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res. 2017, 199, 89–97.
  • Vanholme, R.; Storme, V.; Vanholme, B.; Sundin, L.; Christensen, J. H.; Goeminne, G.; Halpin, C.; Rohde, A.; Morreel, K.; Boerjan, W. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell. 2012, 24, 3506–3529.
  • Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787.
  • Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmuller, E.; Dormann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; et al. [email protected]: the Golm metabolome database. Bioinformatics. 2005, 21, 1635–1638.
  • Chen, H.; Li, L.; Bai, H.; Cao, Y.; Wang, X.; Liu, G. Expression analysis of rice U-Box proteins at different developmental stages. Prog Biochem. Biophys. 2010, 36, 1208–1214.
  • Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428.
  • Reissig, J. L.; Storminger, J. L.; Leloir, L. F. A Modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966.
  • Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201.
  • Schwyn, B.; Neilands, J. B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56.
  • O'Toole, G. A. Microtiter dish biofilm formation assay. JoVE 2011, 47, 2437.
  • Begum, I. F.; Mohankumar, R.; Jeevan, M.; Ramani, K. GC-MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J. Microbiol. 2016, 56, 426–432.
  • Ramasamy, M.; Balasubramanian, U. Identification of bioactive compounds and antimicrobial activity of marine clam Anadara granosa (Linn). Int. J. Sci. Nat. 2012, 2, 263–266.
  • Neves, F. M.; Kawano, C. Y.; Said, S. Effect of benzene compounds from plants on the growth and hyphal morphology in Neurospora crassa. Braz. J. Microbiol. 2005, 36, 190–195.
  • Wang, H.; Chen, Z.; Yang, J.; Liu, Y.; Lu, F. Optimization of sample preparation for the metabolomics of Bacillus licheniformis by GC-MS. In Advances in Applied Biotechnology, Zhang, T.; Nakajima, M., Eds.; Springer: Berlin, 2015; 579–588.
  • Berg, M.; Vanaerschot, M.; Jankevics, A.; Cuypers, B.; Breitling, R.; Dujardin, J. LC-MS metabolomics from study design to data-analysis – using a versatile pathogen as a test case. Comput. Struct. Biotechnol. J. 2013, 4, e201301002.
  • Wu, Q.; Sun, R.; Ni, M.; Yu, J.; Li, Y.; Yu, C.; Dou, K.; Ren, J.; Chen, J. Identification of a novel fungus, Trichoderma Asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. Plos One 2017, 12, e0179957.
  • Li, Y.; Fu, K.; Gao, S.; Wu, Q.; Fan, L.; Li, Y.; Chen, J. Increased virulence of transgenic Trichoderma Koningi strains to the Asian corn borer larvae by overexpressing heterologous chit42 gene with chitin-binding domains. J. Environ. Sci. Heal. B 2013, 48, 376–383.
  • Shah, S.; Karkhanis, V.; Desai, A. Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr. Microbiol. 1992, 25, 347–351.
  • Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In vitro antimicrobial activity of a siderophore cephalosporin, s-649266, against enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Antimicrob. Agents Chemother. 2016, 60, 729–734.
  • Ochiai, A.; Harada, K.; Hashimoto, K.; Shibata, K.; Ishiyama, Y.; Mitsui, T.; Tanaka, T.; Taniguchi, M. Alpha-amylase is a potential growth inhibitor of Porphyromonas gingivalis, a periodontal pathogenic bacterium. J. Periodont. Res. 2014, 49, 62–68.
  • Senevirate, G.; Weerasekara, M.; Seneviratne, C. S.; Zavahir, J. L.; Kecskés, M.; Kennedy, I. Importance of biofilm formation in plant growth promoting Rhizobacterial action. In Plant Growth and Health Promoting Bacteria. Microbiology Monographs; Maheshwari, D., Eds.; Springer: Berlin, 2010; Vol. 18, 81–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.