Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 4
319
Views
13
CrossRef citations to date
0
Altmetric
Articles

The contribution of selected organic substrates to the anaerobic cometabolism of sulfamethazine

, ORCID Icon & ORCID Icon

References

  • Santos, L. H. M. L. M.; Araújo, N. A.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M. C. B. S. M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard Mater. 2010, 175, 45–95. DOI:10.1016/j.jhazmat.2009.10.100.
  • Christou, A.; Agüera, A.; Bayona, J. M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C. M.; Michael, C.; Revitt, M.; Schröder, P.; Fatta-Kassinos, D. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – A review. Water Res. 2017, 123, 448–467. DOI:10.1016/j.watres.2017.07.004.
  • Michael, I.; Rizzo, L.; McArdell, C. S.; Manaia, C. M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 2013, 47, 957–995. DOI:10.1016/j.watres.2012.11.027.
  • Baran, W.; Adamek, E.; Ziemiańska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1–15.
  • Hruska, K.; Franek, M. Sulfonamides in the environment: a review and a case report. Veterinarni Medicina. 2012, 57, 1–35.
  • Dutta, K.; Lee, M. Y.; Lai, W. W. P.; Lee, C. H.; Lin, A. Y. C.; Lin, C. F.; Lin, J. G. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresour. Technol. 2014, 165, 42–49. DOI:10.1016/j.biortech.2014.03.054.
  • Falås, P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T. A.; Joss, A. Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res. 2016, 95, 240–249. DOI:10.1016/j.watres.2016.03.009.
  • Queiroz, F. B.; Brandt, E. M. F.; Aquino, S. F.; Chernicharo, C. A. L.; Afonso, R. J. C. F. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times. Water Sci. Technol. 2012, 66, 2562–2569. DOI:10.2166/wst.2012.482.
  • Carballa, M.; Omil, F.; Ternes, T.; Lema, J. M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res. 2007, 41, 2139–2150. DOI:10.1016/j.watres.2007.02.012.
  • Gonzalez-Gil, L.; Papa, M.; Feretti, D.; Ceretti, E.; Mazzoleni, G.; Steimberg, N.; Pedrazzani, R.; Bertanza, G.; Lema, J. M.; Carballa, M. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Res. 2016, 102, 211–220. DOI:10.1016/j.watres.2016.06.025.
  • Martín, J.; Santos, J. L.; Aparicio, I.; Alonso, E. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting. Sci. Total Environ. 2015, 503–504, 97–104. DOI:10.1016/j.scitotenv.2014.05.089.
  • Mitchell, S. M.; Ullman, J. L.; Teel, A. L.; Watts, R. J.; Frear, C. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 2013, 149, 244–252.
  • Spielmeyer, A.; Breier, B.; Groißmeier, K.; Hamscher, G. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresour. Technol. 2015, 193, 307–314. DOI:10.1016/j.biortech.2015.06.081.
  • Jin, H.; Xu, C.; Du, J.; Wu, H.; Huang, H.; Chang, Z.; Xu, Y.; Zhou, L. Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio. Bioprocess Biosyst. Eng. 2017, 40, 319–330. DOI:10.1007/s00449-016-1699-1.
  • Mohring, S. A. I.; Strzysch, I.; Fernandes, M. R.; Kiffmeyer, T. K.; Tuerk, J.; Hamscher, G. Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ. Sci. Technol. 2009, 43, 2569–2574. DOI:10.1021/es802042d.
  • Chen, Y. S.; Zhang, H.; Luo, Y.; Song, J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ. Monit. Assess 2012, 184, 2205–2217. DOI:10.1007/s10661-011-2110-y.
  • Chen, J.; Liu, Y. S.; Zhang, J. N.; Yang, Y. Q.; Hu, L. X.; Yang, Y. Y.; Zhao, J. L.; Chen, F. R.; Ying, G. G. Removal of antibiotics from piggery wastewater by biological aerated filter system: treatment efficiency and biodegradation kinetics. Bioresour. Technol. 2017, 238, 70–77. DOI:10.1016/j.biortech.2017.04.023.
  • Cheng, D. L.; Ngo, H. H.; Guo, W. S.; Liu, Y. W.; Zhou, J. L.; Chang, S. W.; Nguyen, D. D.; Bui, X. T.; Zhang, X. B. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2018, 621, 1664–1682. DOI:10.1016/j.scitotenv.2017.10.059.
  • Alvarino, T.; Nastold, P.; Suarez, S.; Omil, F.; Corvini, P. F. X.; Bouju, H. Role of biotransformation, sorption and mineralization of 14C-labelled sulfamethoxazole under different redox conditions. Sci. Total Environ. 2016, 542, 706–715. DOI:10.1016/j.scitotenv.2015.10.140.
  • Oliveira, G. H. D.; Santos-Neto, A. J.; Zaiat, M. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments. Bioprocess Biosyst. Eng. 2016, 39, 115–124. DOI:10.1007/s00449-015-1495-3.
  • Oliveira, G. H. D.; Santos-Neto, A. J.; Zaiat, M. Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. J. Environ. Manage. 2017, 204, 674–683. DOI:10.1016/j.jenvman.2017.09.048.
  • Ghattas, A.-K.; Fischer, F.; Wick, A.; Ternes, T. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res. 2017, 116, 268–295. DOI:10.1016/j.watres.2017.02.001.
  • Delgadillo-Mirquez, L.; Lardon, L.; Steyer, J.-P.; Patureau, D. A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. Water Res. 2011, 45, 4511–4521. DOI:10.1016/j.watres.2011.05.047.
  • Tran, N. H.; Urase, T.; Ngo, H. H.; Hu, J.; Ong, S. L. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour. Technol. 2013, 146, 721–731. DOI:10.1016/j.biortech.2013.07.083.
  • Fischer, K.; Majewsky, M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl. Microbiol. Biotechnol. 2014, 98, 6583–6597. DOI:10.1007/s00253-014-5826-0.
  • Dalton, H.; Stirling, D. I. Co-Metabolism [and Discussion]. Philos. Trans. R. Soc. B Biol. Sci. 1982, 297, 481–496.
  • Criddle, C. S. The kinetics of cometabolism. Biotechnol. Bioeng. 1993, 41, 1048–1056.
  • Alvarino, T.; Suarez, S.; Lema, J. M.; Omil, F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 2014, 278, 506–513. DOI:10.1016/j.jhazmat.2014.06.031.
  • Stams, A. Metabolic Interactions between Anaerobic-Bacteria in Methanogenic Environments. Antonie Van Leeuwenhoek Int. J. Gen. Mol. 1994, 66, 271–294. DOI:10.1007/BF00871644.
  • Bergmann, B. A.; Cheng, J.; Classen, J.; Stomp, A. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour. Technol. 2000, 73, 13–20. DOI:10.1016/S0960-8524(99)00137-6.
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, 2005.
  • Lima Gomes, P. C. F.; Tomita, I. N.; Santos-Neto, Á. J.; Zaiat, M. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column switching liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem 2015, 407, 8787–8801. DOI:10.1007/s00216-015-9038-y.
  • Pérez, S.; Eichhorn, P.; Aga, D. S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ. Toxicol. Chem. 2005, 24, 1361–1367. DOI:10.1897/04-211R.1.
  • Abegglen, C.; Joss, A.; Mcardell, C. S.; Fink, G.; Schlu, M. P.; Ternes, T. A.; Siegrist, H. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036–2046.
  • Date, Y.; Iikura, T.; Yamazawa, A.; Moriya, S.; Kikuchi, J. Metabolic sequences of anaerobic fermentation on glucose-based feeding substrates based on correlation analyses of microbial and metabolite profiling. J. Proteome Res. 2012, 11, 5602–5610. DOI:10.1021/pr3008682.
  • Teixidó, M.; Pignatello, J. J.; Beltrán, J. L.; Granados, M.; Peccia, J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 2011, 45, 10020–10027. DOI:10.1021/es202487h.
  • Ramsay, I. R.; Pullammanappallil, P. C. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation. 2001, 12, 247–257.
  • Kassotaki, E.; Buttiglieri, G.; Ferrando-Climent, L.; Rodriguez-Roda, I.; Pijuan, M. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res. 2016, 94, 111–119. DOI:10.1016/j.watres.2016.02.022.
  • Cea-Barcia, G.; Carrère, H.; Steyer, J. P.; Patureau, D. Evidence for PAH removal coupled to the first steps of anaerobic digestion in sewage sludge. Int. J. Chem. Eng. 2013, 2013, 1–6. DOI:10.1155/2013/450542.
  • Braun, F.; Hamelin, J.; Bonnafous, A.; Delgenès, N.; Steyer, J. P.; Patureau, D. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane. PLoS One. 2015, 10, 1–20.
  • Gonzalez-Gil, L.; Mauricio-Iglesias, M.; Serrano, D.; Lema, J. M.; Carballa, M. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. Sci. Total Environ. 2018, 622–623, 459–466. DOI:10.1016/j.scitotenv.2017.12.004.
  • Gonzalez-Gil, L.; Carballa, M.; Lema, J. M. Cometabolic enzymatic transformation of organic micropollutants under methanogenic conditions. Environ. Sci. Technol. 2017, 51, 2963–2971. DOI:10.1021/acs.est.6b05549.
  • Zinder, S. H.; Anguish, T.; Cardwell, S. C. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 1984, 47, 1343–1345.
  • Lenz, M.; Janzen, N.; Lens, P. N. L. Selenium oxyanion inhibition of hydrogenotrophic and acetoclastic methanogenesis. Chemosphere. 2008, 73, 383–388. DOI:10.1016/j.chemosphere.2008.05.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.