Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 2
179
Views
5
CrossRef citations to date
0
Altmetric
Articles

Doramectin induced cytotoxic and genotoxic effects on bovine peripheral lymphocytes and cumulus cells in vitro

, , , , , & show all

References

  • Pathak, V. M.; Navnet. Handbook of Research of Microbial Tools for Environmental Waste Management; IGI Global: India, 2018.
  • Suarez, V. H.; Lifschitz, A. L.; Sallovitz, J. M.; Lanusse, C. E. Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. J. Appl. Entomol. 2003, 127, 481–488. DOI: 10.1046/j.0931-2048.2003.00780.x.
  • Wang, H. Y.; Yang, Y.; Su, J. Y.; Shen, J. L.; Gao, C. F.; Zhu, Y. C. Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang & Wang) (Hymenoptera: Mymanidae): an egg parasitoid of the rice planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Crop Protect. 2008, 27, 514–522. DOI: 10.1016/j.cropro.2007.08.004.
  • Dybas, R. A. Abamectin use in crop protection. In Ivermectin and Abamectin; Campbell, W. C., Ed.; Springer-Verlag: New York, 1989, 287–310.
  • Boxall, A. B. A.; Fogg, L. A.; Blackwell, P. A.; Kay, P.; Pemberton, E. J. Review of Veterinary Medicines in the Environment. R&D Technical Report P6-012/8TR. Environment Agency: Bristol, 2002. Available at http://publications.environment-agency.gov.uk/pdf/SP6-012-8-TR-e-p.pdf (accessed Oct 30, 2018).
  • Wislocki, P. G.; Grosso, L. S.; Dybas, R. A. Environmental Aspects of Abamectin in Crop Protection. In Ivermectin and Abamectin; Campbell, W. C., Ed.; Springer-Verlag: New York, 1989; 182–200.
  • Waal, T. D.; Danaher, M. Veterinary drugs residues: control of helminths. In Encyclopedia of Food Safety; Yasmine Motarjemi, Ed.; Academic Press: Amsterdam, 2014;81–85.
  • Clark, J. M.; Scott, J. G.; Campos, F.; Bloomquist, J. R. Resistance to avermectins: extent, mechanisms, and management implications. Annu. Rev. Entomol. 1995, 40, 1–30. DOI: 10.1146/annurev.en.40.010195.000245.
  • Suárez, V. H.; Lifschitz, A. L.; Sallovitz, J. M.; Lanusse, C. E. Effects of fecal residues of moxidectin and doramectin on the activity of arthropods in cattle dung. Ecotoxicol. Environ. Saf. 2009, 72, 1551–1558. DOI: 10.1016/j.ecoenv.2007.11.009.
  • Ruhl, J.B. Farms, their environmental harms, and environmental law. Ecol. Law Q 2000, 27, 263.
  • Gaw, S.; Thomas, K. V.; Hutchinson, T. H. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos. Trans. R. Soc. B 2014, 369, 20130572. DOI: 10.1098/rstb.2013.0572.
  • Boxall, A. B.; Kolpin, D. W.; Halling-Sorensen, B.; Tolls, J. Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 2003, 37, 286–294.
  • Boxall, A. B. A.; Fogg, L. A.; Baird, D. J.; Lewis, C.; Telfer, T. C.; Kolpin, D.; Gravell, A.; Pemberton, E.; Boucard, T. Targeted Monitoring Study for Veterinary Medicines in the Environment. Environment Agency Science Report: SC030183/SR; The Environment Agency England and Wales: Bristol, UK, 2006.
  • Boxall, A. B. A. Veterinary medicines and the environment. Comparative and veterinary pharmacology. Hand Exp. Pharmacol. 2010, 199, 291–313.
  • Steel, J. W.; Wardhaugh, K. G. Ecological impact of macrocyclic lactones on dung fauna. In Macrocyclic Lactones in Antiparasitic Therapy; Vercruysse, J., Rew, R. S., Eds.; CAB International: Wallingford: UK, 2002; 141–162.
  • Castan, L.; José da Silva, C.; Ferreira Molina, E.; Alves Dos Santos, R. Comparative study of cytotoxicity and genotoxicity of commercial Jeffamines® and polyethylenimine in CHO-K1 Cells. J. Biomed. Mater. Res. B 2018, 106, 742–750. DOI: 10.1002/jbm.b.33882.
  • Diab, K. A.; Fahmy, M. A.; Hassan, Z. M.; Hassan, E. M.; Salama, A. B.; Omara, E. A. Genotoxicity of carbon tetrachloride and the protective role of essential oil of Salvia officinalis L. in mice using chromosomal aberration, micronuclei formation, and comet assay. Environ. Sci. Pollut. Res. Int. 2018, 25, 1621–1636. DOI: 10.1007/s11356-017-0601-2.
  • Perumalla Venkata, R.; Rahman, M. F.; Mahboob, M.; Indu Kumari, S.; Chinde, S.; M, B.; Dumala, N.; Grover, P. Assessment of genotoxicity in female agricultural workers exposed to pesticides. Biomarkers 2017, 22, 446–454. DOI: 10.1080/1354750X.2016.1252954.
  • Netzer, K.; Jordakieva, G.; Girard, A. M.; Budinsky, A. C.; Pilger, A.; Richter, L.; Kataeva, N.; Schotter, J.; Godnic-Cvar, J.; Ertl, P. Next-generation magnetic nanocomposites: cytotoxic and genotoxic effects of coated and uncoated ferric cobalt boron (FeCoB) nanoparticles in vitro. Basic Clin. Pharmacol. Toxicol. 2018, 122, 355–363. DOI: 10.1111/bcpt.12918.
  • Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 1988, 175, 184–191. DOI: 10.1016/0014-4827(88)90265-0.
  • Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. DOI: 10.1038/nprot.2007.77.
  • Dhawan, A.; Bajpayee, M.; Parmar, D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 2009, 25, 5–32. DOI: 10.1007/s10565-008-9072-z.
  • Bolt, H. M.; Stewart, J. D.; Hengstler, J. G. A comprehensive review about micronuclei: mechanisms of formation and practical aspects in genotoxicity testing. Arch. Toxicol. 2011, 85, 861. DOI: 10.1007/s00204-011-0738-6.
  • Araldi, R. P.; de Melo, T. C.; Mendes, T. B.; de Sá Júnior, P. L.; Nozima, B. H.; Ito, E. T.; de Carvalho, F. R.; de Souza, E. B.; de Cassia Stocco, R. Using the comet and micronucleus assays for genotoxicity studies: a review. Biomed. Pharmacother. 2015, 72, 74–82. DOI: 10.1016/j.biopha.2015.04.004.
  • Frotschl, R. Experiences with the in vivo and in vitro comet assay in regulatory testing. Mutagenesis 2015, 30, 51–57. DOI: 10.1093/mutage/geu069.
  • OECD. Genetic Toxicology: Mammalian Erythrocyte Micronucleus Test OECD Guidelines for the Testing of Chemicals, Organization for Economic Co-operation and Development; OECD: Paris, 1997.
  • OECD. Vitro Micronucleus Test. OECD Guidelines for the Testing of Chemicals, Organization for Economic Co-operation and Development; OECD: Paris, 2007.
  • ICH. Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2 (R1). In International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Rockville, Maryland, US,May 19, 2011.
  • Kirsch-Volders, M.; Sofuni, T.; Aardema, M.; Albertini, S.; Eastmond, D.; Fenech, M.; Ishidate, M.; Kirchner, S.; Lorge, E.; Morita, T.; et al. Report from the in vitro micronucleus assay working group. Mutat. Res. 2003, 540, 153–163. DOI: 10.1016/j.mrgentox.2003.07.005.
  • FDA. Guidance for Industry Impurities in Drug Substances and Products: Recommended Approaches; ECA Academy: Heidelberg, Germany, 2008.
  • Lumaret, J.; Errouissi, F.; Floate, K.; Römbke, J.; Wardhaugh, K. A. Review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm. Biotechnol. 2012, 13, 1004–1060. DOI: 10.2174/138920112800399257.
  • EMEA. The European Agency for the Evaluation of Medicinal Products. Doramectin summary report. Committee for Veterinary Medicinal Products: London, 1997.
  • EMEA. The European Agency for the Evaluation of Medicinal Products. Doramectin (Pigs and Sheep) summary report. Committee for Veterinary Medicinal Products: London, 2000.
  • Ferreira, M.; Galarza, R. I.; Paggi, P.; Burgos, G. Lactonas macrocíclicas y cooperia spp en bovinos. persistencia del status de resistencia luego de cinco años sin el uso de estas drogas como antihelmínticos y eficacia comparativa entre ivermectina y moxidectina. Instituto Nacional de Tecnología Agropecuaria: Argentina, 2011.
  • Anziani, O. S.; Fiel, C. A. Resistencia a los antihelmínticos en nematodos que parasitan a los rumiantes en la Argentina. Rev. Investigaciones Agropecuarias 2015, 41, 34–46.
  • WHO, World Health Organization. National Center for Biotechnology Information. PubChem Compound database; CID = 9832750, 1996. Available at https://pubchem.ncbi.nlm.nih.gov/compound/9832750(accessed Dec 20, 2018).
  • Woodward, K. N. Toxicological Effects of Veterinary Medicinal Products in Humans, Vol. 1. Royal Society of Chemistry, UK: Cambridge, 2013.
  • Al-Sarar, A. S.; Abobakr, Y.; Bayoumi, A. E.; Hussein, H. Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ. Sci. Pollut. Res. 2015, 22, 17041–17052. DOI: 10.1007/s11356-015-4927-3.
  • Molinari, G.; Soloneski, S.; Larramendy, M. L. New ventures in the genotoxic and cytotoxic effects of macrocyclic lactones, abamectin and ivermectin. Cytogenet. Genome Res. 2010, 128, 37–45. DOI: 10.1159/000293923.
  • Zhang, Y.; Wu, J.; Xu, W.; Gao, J.; Cao, H.; Yang, M.; Wang, B.; Hao, Y.; Tao, L. Cytotoxic effects of avermectin on human HepG2 cells in vitro bioassays. Environ. Pollut. (Part B) 2017, 220, 1127–1137., DOI: 10.1016/j.envpol.2016.11.022.
  • Wu, J.; Tu, D.; Yuan, L.-Y.; Yuan, H.; Wen, L.-X. T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative stress. Environ. Toxicol. Pharmacol. 2013, 36, 493–500. DOI: 10.1016/j.etap.2013.03.017.
  • Robb, J.; Norval, M.; Neill, W. A. The use of tissue culture for the detection of mycotoxins. Lett. Appl. Microbiol. 1990, 10, 161–165. DOI: 10.1111/j.1472-765X.1990.tb00105.x.
  • Tice, R.; Strauss, G. H. The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 1995, 13, 207–214.
  • Olive, P. L. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int. J. Radiat. Biol. 1999, 75, 395–405.
  • Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. DOI: 10.1385/MB:26:3:249.
  • Mosin, V. A.; Krugliak, E. B.; Sterlina, T. S.; Korystov, I. N.; Shaposhnikova, V. V.; Kublik, L. N.; Levitman, M. K. H.; Viktorov, A. V.; Driniaev, V. A. Action of avermectins on lymphoid leukemia P-388 cells in vitro. Antibiot. Khimioter. 1999, 44, 16–20.
  • Mosin, V. A.; Krugliak, E. B.; Sterlina, T. S.; Korystov, I. N.; Shaposhnikova, V. V.; Narimanov, A. A.; Kublik, L. N.; Levitman, M. K. H.; Viktorov, A. V.; Driniaev, V. A. Cytotoxic and cytostatic effect of avermectines on tumor cells in vitro. Antibiot. Khimioter. 2000, 45, 10–14.
  • Zhang, Y.; Luo, M.; Xu, W.; Yang, M.; Wang, B.; Gao, J.; Li, Y.; Tao, L. Avermectin confers its cytotoxic effects by inducing DNA damage and mitochondria-associated apoptosis. J. Agric. Food Chem. 2016, 64, 6895–6902. DOI: 10.1021/acs.jafc.6b02812.
  • Molinari, G.; Soloneski, S.; Reigosa, M. A.; Larramendy, M. L. in vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec on Chinese hamster ovary (CHOK1) cells. J. Hazard. Mater. 2009, 165, 1074–1082. DOI: 10.1016/j.jhazmat.2008.10.083.
  • Kimura, A.; Miyata, A.; Honma, M. A combination of in vitro comet assay and micronucleus test using human lymphoblastoid TK6 cells. Mutagenesis 2013, 28, 583–590. DOI: 10.1093/mutage/get036.
  • Nikoloff, N.; Larramendy, M. L.; Soloneski, S. Comparative evaluation in vitro of the herbicide flurochloridone by cytokinesis-block micronucleus cytome and comet assays. Environ. Toxicol. 2014, 29, 884–892. DOI: 10.1002/tox.21816.
  • Bajpayee, M.; Kumar, A.; Dhawan, A. The comet assay: assessment of in vitro and in vivo DNA damage. Methods Mol. Biol. 2013, 1044, 325–345. DOI: 10.1007/978-1-62703-529-3_17.
  • Koppen, G.; Azqueta, A.; Pourrut, B.; Brunborg, G.; Collins, A. R.; Langie, S. A. S. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017, 32, 397–408. DOI: 10.1093/mutage/gex002.
  • Fenech, M. Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov. Today 2002, 7, 1128–1137. DOI: 10.1016/S1359-6446(02)02502-3.
  • Serrano-Garcia, L.; Montero-Montaya, R. Micronuclei and chromatid buds are the result of related genotoxic events. Environ. Mol. Mutagen. 2001, 38, 38–45.
  • Thomas, P.; Umegaki, K.; Fenech, M. Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagenesis 2003, 18, 187–194. DOI: 10.1093/mutage/18.2.187.
  • Heuser, V.; Andrade, V.; Peres, A.; Braga, L.; Chies, J. Influence of age and sex on the spontaneous DNA damage detected by micronucleus test and comet assay in mice peripheral blood cells. Cell. Biol. Int. 2008, 32, 1223–1229. DOI: 10.1016/j.cellbi.2008.07.005.
  • Udroiu, I.; Sgura, A. Cytogenetic tests for animal production: state of the art and perspectives. Anim. Genet. 2017, 48, 505–515. DOI: 10.1111/age.12581.
  • OECD. Test No. 489: In vivo mammalian alkaline comet assay, 2014. Available at http://dx.doi.org/10.1787/9789264224179-en(accessed Dec 20, 2018).
  • Hartmann, A.; Schumacher, M.; Plappert-Helbig, U.; Lowe, P.; Suter, W.; Mueller, L. Use of the alkaline in vivo comet assay for mechanistic genotoxicity investigations. Mutagenesis 2004, 19, 51–59.
  • Snyder, R.; Green, J. A review of the genotoxicity of marketed pharmaceuticals. Mutat. Res. 2001, 488, 151–169. DOI: 10.1016/S1383-5742(01)00055-2.
  • Molinari, G.; Kujawski, M.; Scuto, A.; Soloneski, S.; Larramendy, M. L. DNA damage kinetics and apoptosis in ivermectin-treated Chinese hamster ovary cells. J. Appl. Toxicol. 2013, 33, 1260–1267. DOI: 10.1002/jat.2782.
  • el-Ashmawy, I. M.; el-Nahas, A. F.; Bayad, A. E. Teratogenic and cytogenetic effects of ivermectin and its interaction with P-glycoprotein inhibitor. Res. Vet. Sci. 2011, 90, 116–123. DOI: 10.1016/j.rvsc.2010.05.020.
  • Macedo, F.; Marsico, E. T.; Conte-Junior, C. A.; de Almeida Furtado, L.; Brasil, T. F.; Pereira Netto, A. D. Macrocyclic lactone residues in butter from Brazilian markets. J. Dairy Sci. 2015, 98, 3695–3700. DOI: 10.3168/jds.2014-9130.
  • International Agency for Research on Cancer. Available at https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed Oct 30, 2018.).
  • United States Environmental Protection Agency. Available at https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-122804_15-Jun-00_a.pdf (accessed Oct 30, 2018.).
  • The European Chemicals Agency. Available at https://echa.europa.eu/substance-information/-/substanceinfo/100.113.437 (accessed Oct 30, 2018).
  • Pubchem, open chemistry database. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Doramectin#section=Top (accessed Oct 30, 2018.).
  • Pubchem, open chemistry database. Available at https://pubchem.ncbi.nlm.nih.gov/compound/6434889 (accessed Oct 30, 2018.).
  • Pubchem, open chemistry database. Available at https://pubchem.ncbi.nlm.nih.gov/compound/6321424#section=Top (accessed Oct 30, 2018). [CrossRef].
  • Floate, K. D. Endectocide use in cattle and fecal residues: environmental effects in Canada. Can. J. Vet. Res. 2006, 70, 1–10.
  • Pavanello, S.; Levis, A. G. Human peripheral blood lymphocytes as a cell model to evaluate the genotoxic effect of coal tar treatment. Environ. Health Perspect. 1994, 102, 95–99. DOI: 10.1289/ehp.94102s995.
  • Babaei, H.; Roshangar, L.; Sakhaee, E.; Abshenas, J.; Kheirandish, R.; Dehghani, R. Ultrastructural and morphometrical changes of mice ovaries following experimentally induced copper poisoning. Iran. Red Crescent Med. J. 2012, 14, 558–568.
  • Santos, R. R.; Schoevers, E. J.; Roelen, B. A. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod. Biol. Endocrinol. 2014, 12, 117. DOI: 10.1186/1477-7827-12-117.
  • Ceko, M. J.; Hummitzsch, K.; Hatzirodos, N.; Rodgers, R. J.; Harris, H. H. Quantitative elemental analysis of bovine ovarian follicles using X-ray fluorescence imaging. Metallomics 2015, 7, 828–836. DOI: 10.1039/C5MT00035A.
  • Tanghe, S.; Van Soom, A.; Nauwynck, H.; Coryn, M.; de Kruif, A. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 2002, 61, 414–424. DOI: 10.1002/mrd.10102.
  • Krisher, R. L. The effect of oocyte quality on development. J. Anim. Sci. 2004, 82, 14–23.. DOI: 10.2527/2004.8213_supplE14x.
  • Yuan, Y. Q.; Van Soom, A.; Leroy, J. L.; Dewulf, J.; Van Zeveren, A.; de Kruif, A.; Peelman, L. J. Apoptosis in cumulus cells but not in oocytes may influence bovine embryonic developmental competence. Theriogenology 2005, 63, 2147–2163. DOI: 10.1016/j.theriogenology.2004.09.054.
  • Høst, E.; Gabrielsen, A.; Lindenberg, S.; Smidt-Jensen, S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil. Steril. 2002, 77, 511–515. DOI: 10.1016/S0015-0282(01)03006-0.
  • Seino, T.; Saito, H.; Kaneko, T.; Takahashi, T.; Kawachiya, S.; Kurachi, H. Eight-hydroxy-2′-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil. Steril. 2002, 77, 1184–1190. DOI: 10.1016/S0015-0282(02)03103-5.
  • Corn, C. M.; Hauser-Kronberger, C.; Moser, M.; Tews, G.; Ebner, T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil. Steril. 2005, 84, 627–633. DOI: 10.1016/j.fertnstert.2005.03.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.