Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 4
261
Views
13
CrossRef citations to date
0
Altmetric
Articles

Rice and wheat straw ashes: Characterization and modeling of pretilachlor sorption kinetics and adsorption isotherm

, &

References

  • Vryzas, Z.; Papadakis, E. N.; Vassiliou, G.; Papadopoulou-Mourkidou, E. Occurrence of pesticides in trans boundary aquifers of north-eastern Greece. Sci. Total Environ. 2012, 441, 41–48. DOI:10.1016/j.scitotenv.2012.09.074.
  • ADEQ Pesticides Annual Report. Arizona Department of Environmental Quality, 2013; 48–65.
  • Lopez-Ramon, M. V.; Fontecha-Camara, M. A.; Alvarez-Merino, M. A.; Moreno-Castilla, C. Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Res. 2007, 41, 2865–2870. DOI:10.1016/j.watres.2007.02.059.
  • Castro, C. S.; Guerreiro, M. C.; Goncalves, M.; Oliveira, L. C. A.; Anastacio, A. S. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J. Hazard. Mater. 2009, 164, 609–614.
  • Kumar, Y. B.; Singh, N.; Singh, S. B. Removal of herbicide mixture of atrazine, metribuzin, metolachlor and alachlor from water using granular carbon. Indian J. Chem. Technol. 2017, 24, 400–404.
  • Boudesocque, S.; Guillon, E.; Aplincourt, M.; Martel, F.; Noël, S. Use of a low-cost biosorbent to remove pesticides from wastewater. J. Environ. Qual. 2008, 37, 631–638.
  • Srivastava, V. C.; Prasad, B.; Mishra, I. M.; Mall, I. D.; Swamy, M. M. Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Ind. Eng. Chem. Res. 2008, 47, 1603–1613. DOI:10.1021/ie0708475.
  • Lataye, D. H.; Mishra, I. M.; Mall, I. D. Adsorption of 2-picoline onto bagasse fly ash from aqueous solution. Chem. Eng. J. 2008, 138, 35–46. DOI:10.1016/j.cej.2007.05.043.
  • Foo, K. Y.; Hameed, B. H. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 2009, 152, 39–47. DOI:10.1016/j.cis.2009.09.005.
  • Ahmaruzzaman, M.; Gupta, V. K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 2011, 50, 13589–13613. DOI:10.1021/ie201477c.
  • Deokar, S. K.; Mandavgane, S. A.; Kulkarni, B. D. Behaviour of biomass multicomponent ashes as adsorbents. Curr. Sci. 2016, 110, 180–186. DOI:10.18520/cs/v110/i2/180-186.
  • Gupta, V. K.; Ali, I. Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res. 2001, 35, 33–40.
  • Gupta, V. K.; Jain, C. K.; Ali, I.; Chandra, S.; Agarwal, S. Removal of Lindane and Malathion from wastewater using bagasse fly ash – A sugar industry waste. Water Res. 2002, 36, 2483–2490.
  • Deokar, S. K.; Mandavgane, S. A. Estimation of packed bed parameters and prediction of breakthrough curves for adsorptive removal of 2,4-dichlorophenoxyacetic acid using rice husk ash. J. Environ. Chem. Eng. 2015, 3, 1827–1836. DOI:10.1016/j.jece.2015.06.025.
  • Trivedi, N. S.; Mandavgane, S. A.; Kulkarni, B. D. Mustard plant ash: A source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ. Sci. Pollut. Res. Int. 2016, 23, 20087–20099.
  • Deokar, S. K.; Mandavgane, S. A.; Kulkarni, B. D. Agro-industrial waste: A low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes. Environ. Sci. Pollut. Res. Int. 2016, 23, 16164–16175.
  • Deokar, S. K.; Singh, D.; Modak, S.; Mandavgane, S. A.; Kulkarni, B. D. Adsorptive removal of diuron on biomass ashes: A comparative study using rice husk ash and bagasse fly ash as adsorbents. Desalin. Water Treat. 2016, 57, 22378–22391. DOI:10.1080/19443994.2015.1132394.
  • Deokar, S. K.; Mandavgane, S. A.; Kulkarni, B. D. Comparative evaluation of packed-bed performance of biomass ashes as adsorbents for removal of diuron from aqueous solution. Desalin. Water Treat. 2016, 57, 28831–28846. DOI:10.1080/19443994.2016.1196391.
  • Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. DOI:10.4209/aaqr.2013.01.0031.
  • Kitamoto, Y.; Yabuuchi, N.; Yoshimura, S.; Hirabayashi, T. Behavior of pesticides in drinking water purification system and their occurrence in water resource. 2016. Available at www.city.osaka.lg.jp/suido/…/291117nouyakuruinojyousuisyoriseitosonnzaijittai.pdf (accessed Aug 23, 2018)
  • Ho, Y. S. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003, 37, 2323–2330.
  • Mandal, A.; Singh, N.; Purakayastha, T. J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. DOI:10.1016/j.scitotenv.2016.10.204.
  • Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Vet. Akad. Handl. 1898, 24, 1–27.
  • Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. DOI:10.1016/S0032-9592(98)00112-5.
  • Chien, S.; Clayton, W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. DOI:10.2136/sssaj1980.03615995004400020013x.
  • Weber, W.; Morris, J. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civic Eng. 1963, 89, 31–60.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids. I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. DOI:10.1021/ja02268a002.
  • Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470.
  • Jovanovic, D. Kolloid Zeitschrifi. Z. Poll-Mere 1969, 235, 1203.
  • Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. 1940, 12, 217–222.
  • Redlich, O.; Peterson, D. L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024. DOI:10.1021/j150576a611.
  • Sips, R. Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 1948, 16, 490–495. DOI:10.1063/1.1746922.
  • Koble, R. A.; Corrigan, T. E. Adsorption isotherms for pure hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. DOI:10.1021/ie50506a049.
  • Fritz, W.; Schluender, E. U. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem. Eng. Sci. 1974, 29, 1279–1282. DOI:10.1016/0009-2509(74)80128-4.
  • Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. DOI:10.1137/0111030.
  • Porter, J.; McKay, G.; Choy, K. The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci. 1999, 54, 5863–5885. DOI:10.1016/S0009-2509(99)00178-5.
  • Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.-M.; Crini, G. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater. 2008, 157, 34–46. DOI:10.1016/j.jhazmat.2007.12.072.
  • SigmaPlot. Systat Software, San Jose, CA.
  • Boulinguiez, B.; Le Cloirec, P.; Wolbert, D. Revisiting the determination of langmuir parameters: Application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 2008, 24, 6420–6424. DOI:10.1021/la800725s.
  • Maresca, A.; Hyks, J.; Astrup, T. F. Recirculation of biomass ashes onto forest soils: Ash composition mineralogy and leaching properties. Waste Manag. 2017, 70, 127–138. DOI:10.1016/j.wasman.2017.09.008.
  • Chang, C. F.; Chang, C. Y.; Chen, K. H.; Tsai, W. T.; Shie, J. L.; Chen, Y. H. Adsorption of naphthalene on zeolite from aqueous solution. J. Colloid Interface Sci. 2004, 277, 29–34. DOI:10.1016/j.jcis.2004.04.022.
  • Rojas, R.; Vanderlinden, E.; Morillo, J.; Usero, J.; El Bakouri, H. Characterization of sorption processes for the development of low cost pesticide decontamination techniques. Sci. Total Environ. 2014, 488, 124–135. DOI:10.1016/j.scitotenv.2014.04.079.
  • Fogler, H. S. Elements of Chemical Reaction Engineering, 4th ed.; Prentice-Hall Inc.: New Jersey, 2006.
  • Igwe, J.; Ekwuruke, A.; Gbaruko, B.; Abia, A. Detoxification of copper fungicide using EDTA-modified cellulosic material. Afr. J. Biotechnol. 2009, 8, 856–864.
  • Kaur, P.; Kaur, P.; Singh, K.; Kaur, M. Adsorption and desorption characteristics of pretilachlor in three soils of Punjab. Water Air Soil Pollut. 2016, 227, 376. DOI:10.1007/s11270-016-3074-x.
  • Johnson, R. D.; Arnold, F. H. The Temkin isotherm describes heterogeneous protein adsorption. Biochim. Biophys. Acta – Protein Struct. Mol. Enzymol. 1995, 1247, 293–297. DOI:10.1016/0167-4838(95)00006-G.
  • Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S. N. A. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. Doi: 10.1155/2018/3463724.
  • Foo, K.; Hameed, B. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. DOI:10.1016/j.cej.2009.09.013.
  • Günay, A.; Arslankaya, E.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371. DOI:10.1016/j.jhazmat.2006.12.034.
  • Oubagaranadin, J. U. K.; Murthy, Z. V. P. Isotherm modeling and batch adsorber design for the adsorption of Cu (II) on a clay containing montmorillonite. Appl. Clay Sci. 2010, 50, 409–413. DOI:10.1016/j.clay.2010.09.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.