Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 5
2,230
Views
83
CrossRef citations to date
0
Altmetric
Review Articles

Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Gomiero, T. Agriculture and degrowth: state of the art and assessment of organic and biotech-based agriculture from a degrowth perspective. J. Clean. Prod. 2018, 197, 1823–1839. DOI: 10.1016/j.jclepro.2017.03.237.
  • Mostafalou, S.; Abdollahi, M. Pesticides: an update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. DOI: 10.1007/s00204-016-1849-x.
  • Albuquerque, N. C. P.; Carrão, D. B.; Habenschus, M. D.; Oliveira, A. R. M. Metabolism studies of chiral pesticides: a critical review. J. Pharm. Biomed. Anal. 2018, 147, 89–109. DOI: 10.1016/j.jpba.2017.08.011.
  • Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Appl. Soil Ecol. 2018, 123, 714–728. DOI: 10.1016/j.apsoil.2017.10.014.
  • Marutescu, L.; Popa, M.; Saviuc, C.; Lazar, V.; Chifiriuc, M. C. Botanical pesticides with virucidal, bactericidal, and fungicidal activity. In New Pesticides and Soil Sensors, 1st ed.; Grumezescu, A., Ed.; Academic Press: London, 2017; pp 311–335.
  • Richmond, A. Handbook of Microalgal Culture. Blackwell Publishing Ltd: Oxford, UK, 2003; p 239.
  • Tassara, C.; Zaccaro, M. C.; Storni, M. M.; Palma, M.; Zulpa, G. Biological control of lettuce white mold with cyanobacteria. Int. J. Agric. Biol 2008, 10, 487–492.
  • Wuang, S. C.; Khin, M. C.; Chua, P. Q. D.; Luo, Y. D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016, 15, 59–64. DOI: 10.1016/j.algal.2016.02.009.
  • Castro, J. S.; Calijuri, M. L.; Assemany, P. P.; Cecon, P. R.; Assis, I. R.; Ribeiro, V. J. Microalgae biofilm in soil: greenhouse gas emissions, ammonia volatilization and plant growth. Sci. Total Environ. 2017, 574, 1640–1648. DOI: 10.1016/j.scitotenv.2016.08.205.
  • Abdel-Raouf, N. Agricultural Importance of Algae. Afr. J. Biotechnol. 2012, 11, 11648–11658.
  • Manjunath, M.; Kanchan, A.; Ranjan, K.; Venkatachalam, S.; Prasanna, R.; Ramakrishnan, B.; Hossain, F.; Nain, L.; Shivay, Y. S.; Rai, A. B.; Singh, B. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon 2016, 2, e00066. DOI: 10.1016/j.heliyon.2016.e00066.
  • Quadros, P. D.; Zhalnina, K.; Davis-Richardson, A. G.; Drew, J. C.; Menezes, F. B.; Camargo, F. A. O.; Triplett, E. W. Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl. Soil Ecol. 2016, 98, 195–203. DOI: 10.1016/j.apsoil.2015.10.016.
  • Kheirfam, H.; Sadeghi, S. H.; Homaee, M.; Zarei, D. B. Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res. 2017, 165, 230–238. DOI: 10.1016/j.still.2016.08.021.
  • Bidyarani, N.; Prasanna, R.; Babu, S.; Hossain, F.; Saxena, A. K. Enhancement of plant growth and yields in chickpea (Cicer Arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol. Res. 2016, 188–189, 97–105. DOI: 10.1016/j.micres.2016.04.005.
  • Rossi, F.; Olguín, E. J.; Diels, L.; Philippis, R. D. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. N Biotechnol. 2015, 32, 109–120. DOI: 10.1016/j.nbt.2013.12.002.
  • Marks, E. A. N.; Miñón, J.; Pascual, A.; Montero, O.; Navas, L. M.; Rad, C. Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Sci. Total Environ. 2017, 605–606, 610–617. DOI: 10.1016/j.scitotenv.2017.06.169.
  • MacGregor, J. T. Genetic Toxicity Assessment of Microbial Pesticides: Needs and Recommended Approaches. Organization for Economic Cooperation and Development: Paris, France, 2006.
  • Mnif, I.; Ghribi, D. Potential of bacterial derived biopesticides in pest management. Crop Prot. 2015, 77, 52–64. DOI: 10.1016/j.cropro.2015.07.017.
  • Thakore, Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2006, 2, 194–208. DOI: 10.1089/ind.2006.2.194.
  • Aldrich, J. R.; Cantelo, W. W. Suppression of Colorado potato beetle infestation by pheromone- mediated augmentation of the predatory spined soldier bug, Podisus Maculiventris (Say) (Heteroptera: Pentatomidae). Agric. Forest Ent. 1999, 1, 209–217. DOI: 10.1046/j.1461-9563.1999.00026.x.
  • Gupta, S.; Dikshit, A. K. Biopesticides: an ecofriendly approach for pest control. J. Biopestic 2010, 3, 186–188.
  • Grossmann, K. Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci. 2000, 5, 506–508. DOI: 10.1016/S1360-1385(00)01791-X.
  • Campbell, M. K. Bioquímica. Artmed: Porto Alegre, 2000; 752.
  • Grossmann, K. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 1998, 46, 707–716.
  • Schuster, C.; Konstantinidou-Doltsinis, S.; Schmitt, A. Glycyrrhiza glabra extract protects plants against important phytopathogenic fungi. Commun. Agric. Appl. Biol. Sci. 2010, 75, 531–540.
  • Bardin, M.; Ajouz, S.; Comby, M.; Lopez-Ferber, M.; Graillot, B.; Siegwart, M.; Nicot, P. C. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 2015, 6, 1–14.
  • Isman, M. B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. DOI: 10.1016/S0261-2194(00)00079-X.
  • Ntalli, N. G.; Menkissoglu-Spiroudi, U. Pesticides of botanical origin: a promising tool in plant protection. In Pesticides - Formulations, Effects, Fate; Stoytcheva, M., Ed.; InTech: Rijeka, 2011; 1–24.
  • Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res. 2004, 18, 435–448. DOI: 10.1002/ptr.1465.
  • Priya, M.; Gurung, N.; Mukherjee, K.; Bose, S. Microalgae in removal of heavy metal and organic pollutants from soil. In Microbial Biodegradation and Bioremediation; Surajit, D., Ed.; Elsevier: Oxford, 2014; 519–537.
  • Zulpa, G.; Zaccaro, M. C.; Boccazzi, F.; Parada, J. L.; Storni, M. Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “wood blue stain” fungi. Biol. Control 2003, 27, 345–348. DOI: 10.1016/S1049-9644(03)00015-X.
  • Biondi, N.; Piccardi, R.; Margheri, M. C.; Rodolfi, L.; Smith, G. D.; Tredici, M. R. Evaluation of Nostoc Strain ATCC 53789 as a potential source of natural pesticides. Appl. Environ. Microbiol. 2004, 70, 3313–3320. DOI: 10.1128/AEM.70.6.3313-3320.2004.
  • Stirk, W. A.; Bálint, P.; Tarkowská, D.; Novák, O.; Maróti, G.; Ljung, K.; Turečková, V.; Strnad, M.; Ördög, V.; Staden, J. V. Effect of light on growth and endogenous hormones in Chlorella Minutissima (Trebouxiophyceae). Plant Physiol. Biochem. 2014, 79, 66–76. DOI: 10.1016/j.plaphy.2014.03.005.
  • Hussein, M. Y.; Abd El-All, A. A. M.; Mostafa, S. S. M. In Bioactivity of algal extracellular byproducts on cercospora leaf spot disease, growth performance and quality of sugar beet, Presented at the 4th Conference on Recent Technologies in Agriculture, Cairo, Egypt, 2009.
  • Hernández-Carlos, B.; Gamboa-Angulo, M. M. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem. Rev. 2011, 10, 261–286. DOI: 10.1007/s11101-010-9192-y.
  • European Food Safety Authority (EFSA). The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, 134.
  • Pesticide registration manual: chapter 1 - overview of requirements for pesticide registration and registrant obligations. https://www.epa.gov/pesticide-registration/pesticide-registration-manual-chapter-1-overview-requirements-pesticide#toxicity (accessed July 14, 2018).
  • Ministério da Agricultura Pecuária e Abastecimento. Instrução Normativa Conjunta no 3 de 10 de março de 2006. http://www2.camara.leg.br/legin/marg/instnc/2005/instrucaonormativaconjunta-32-26-outubro-2005-539367-publicacaooriginal-37884-anvs_sda_ibama.html (accessed June 07, 2018).
  • Mie, A.; Andersen, H. R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: a comprehensive review. Environ. Health 2017, 16, 111. DOI: 10.1186/s12940-017-0315-4.
  • Carvalho, F. P. Agriculture, pesticides, food Security and food safety. Environ. Sci. Policy 2006, 9, 685–692. DOI: 10.1016/j.envsci.2006.08.002.
  • Stenersen, J. Chemical Pesticides Mode of Action and Toxicology; CRC Press: New York, 2004; p 266.
  • Maele-Fabry, G. V.; Hoet, P.; Vilain, F.; Lison, D. Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ. Int. 2012, 46, 30–43. DOI: 10.1016/j.envint.2012.05.004.
  • Starling, A. P.; Umbach, D. M.; Kamel, F.; Long, S.; Sandler, D. P.; Hoppin, J. A. Pesticide use and incident diabetes among wives of farmers in the agricultural health study. Occup. Environ. Med. 2014, 71, 629–635. DOI: 10.1136/oemed-2013-101659.
  • Goodson, W. H.; Lowe, L.; Carpenter, D. O.; Gilbertson, M.; Manaf Ali, A.; Lopez, C. S. A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015, 36, S254–S296. DOI: 10.1093/carcin/bgv039.
  • Schinasi, L.; Leon, M. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2014, 11, 4449–4527. DOI: 10.3390/ijerph110404449.
  • Ntzani, E. E.; Chondrogiorgi, M.; Ntritsos, G.; Evangelou, E.; Tzoulaki, I. Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Support. Publ. 2013, EN-497, 1–159.
  • Kortenkamp, A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr. Opin. Pharmacol. 2014, 19, 105–111. DOI: 10.1016/j.coph.2014.08.006.
  • Bjørling-Poulsen, M.; Andersen, H. R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7, 50. DOI: 10.1186/1476-069X-7-50.
  • Araujo, J. S. A.; Delgado, I. F.; Paumgartten, F. J. R. Glyphosate and adverse pregnancy outcomes, a systematic review of observational studies. BMC Public Health 2016, 16, 472. DOI: 10.1186/s12889-016-3153-3.
  • Carvalho, F. P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. DOI: 10.1002/fes3.108.
  • Singh, B.; Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT-Food Sci. Technol. 2018, 87, 93–101. DOI: 10.1016/j.lwt.2017.08.077.
  • Rodríguez, Á. G. P.; Lopez, M. I. R.; Casillas, T. Á. D.; León, J. A. A.; Mahjoub, O.; Prusty, A. K. Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer. Environ. Pollut. 2017, 220, 853–862. DOI: 10.1016/j.envpol.2016.10.068.
  • Attaullah, M.; Yousuf, M. J.; Shaukat, S.; Anjum, S. I.; Ansari, M. J.; Buneri, I. D.; Tahir, M.; Amin, M.; Ahmad, N.; Khan, S. U. Serum organochlorine pesticides residues and risk of cancer: a case-control study. Saudi J. Biol. Sci. 2018, 25(7), 1284–1290. DOI: 10.1016/j.sjbs.2017.10.023.
  • Li, Z. Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. J. Environ. Manage. 2018, 205, 163–173. DOI: 10.1016/j.jenvman.2017.09.070.
  • Sullivan, K. M.; Aggarwal, M.; Akins, J. M.; Fabian, E.; Heylings, J. R.; Raabe, H.; Shah, P. P. V.; Wiemann, C.; Peffer, R. Dermal absorption for pesticide health risk assessment: harmonization of study design and data reporting for North American regulatory submissions. Regul. Toxicol. Pharmacol. 2017, 90, 197–205. DOI: 10.1016/j.yrtph.2017.09.012.
  • Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. DOI: 10.2478/v10102-009-0001-7.
  • Al-Abboud, M. A. Bioimpact of application of pesticides with plant growth hormone (gibberellic acid) on target and non-target microorganisms. J. Saudi Chem. Soc. 2014, 18, 1005–1010. DOI: 10.1016/j.jscs.2011.12.004.
  • Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. DOI: 10.1007/s10668-005-7314-2.
  • Nagai, H.; Kan, Y.; Fujita, T.; Sakamoto, B.; Hokama, Y. Manauealide C and anhydrodebromoaplysiatoxin, toxic constituents of the Hawaiian Red Alga, Gracilaria Coronopifolia. Biosci. Biotechnol. Biochem. 1998, 62, 1011–1013. DOI: 10.1271/bbb.62.1011.
  • Singh, D. P.; Kumar, A.; Tyagi, M. B. Biotoxic cyanobacterial metabolites exhibiting pesticidal and mosquito larvicidal activities. J. Microbiol. Biotechnol. 2003, 13, 50–56.
  • Tyler, C. R.; Beresford, N.; van der Woning, M.; Sumpter, J. P.; Tchorpe, K. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ. Toxicol. Chem. 2000, 19, 801–809. DOI: 10.1897/1551-5028(2000)019<0801:MAEDOP>2.3.CO;2.
  • Ecobichon, D. J. Our changing perspectives on benefits and risks of pesticides: a historical overview. Neurotoxicology 2000, 21, 211–218.
  • Marrone, P. G. The market and potential for biopesticides. In Biopesticides: State of the Art and Future Oppoortunities; Seiber, J. N., Coats, J., Duke, S. O., Gross, A. D., Eds.; American Chemical Society: Washington, DC, 2014; pp 245–258.
  • Grovermann, C.; Schreinemachers, P.; Riwthong, S.; Berger, T. Smart’ policies to reduce pesticide use and avoid income trade-offs: an agent-based model applied to Thai agriculture. Ecol. Econ. 2017, 132, 91–103. DOI: 10.1016/j.ecolecon.2016.09.031.
  • Chitrampalam, P.; Wu, B. M.; Koike, S. T.; Subbarao, K. V. Interactions between Coniothyrium Minitans and Sclerotinia Minor affect biocontrol efficacy of C. minitans. Phytopathology 2011, 101, 358–366. DOI: 10.1094/PHYTO-06-10-0170.
  • Jackson, T. A. A novel bacterium for control of grass grub, In Biological Control: A Global Perspective; Vicent, C., Goettel, M.S., Lazarovits, G., Eds.; CABI: Wallingford, 2007; pp 160–168.
  • Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. DOI: 10.1016/j.tibtech.2012.01.003.
  • Ravensberg, W. J. A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Springer Netherlands: Dordrecht, 2011.
  • Jiang, X.; Hansen, H. C. B.; Strobel, B. W.; Cedergreen, N. What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environ. Pollut. 2018, 236, 416–424. DOI: 10.1016/j.envpol.2018.01.058.
  • Barceló, D.; Hennion, M.-C. Trace Determination of Pesticides and Their Degradation Products in Water. Elsevier Science: Netherlands, 1997.
  • Taylor, M. D. Pesticide Residues in Coastal Tropical Ecosystems□: Distribution, Fate and Effects. Taylor & Francis: London, 2003.
  • Seufert, V.; Ramankutty, N.; Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. DOI: 10.1038/nature11069.
  • Ponisio, L. C.; M'Gonigle, L. K.; Mace, K. C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2014, 282, 20141396–20141396. DOI: 10.1098/rspb.2014.1396.
  • Villaverde, J. J.; Sandín-España, P.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J. L. Biopesticides from natural products: current development, legislative framework, and future trends. Bioresources 2016, 11, 5618–5640.
  • Gheorghe, I.; Popa, M.; Marutescu, L.; Saviuc, C.; Lazar, V.; Chifiriuc, M. C. Lessons from inter-regn communication for the development of novel, ecofriendly pesticides, In New Pesticides and Soil Sensors, 1st ed.; Grumezescu A., Ed.; Academic Press: London, 2017; pp 1–45.
  • El-Mougy, N. S.; Abdel-Kader, M. M. Effect of commercial cyanobacteria products on the growth and antagonistic ability of some bioagents under laboratory conditions. J. Pathog. 2013, 2013, 1–11. DOI: 10.1155/2013/838329.
  • Berry, J. P.; Gantar, M.; Perez, M. H.; Berry, G.; Noriega, F. G. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and Insecticides. Mar. Drugs 2008, 6, 117–146. DOI: 10.3390/md6020117.
  • Rastogi, R. P.; Sinha, R. P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539. DOI: 10.1016/j.biotechadv.2009.04.009.
  • Kulik, M. M. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 1995, 101, 585–599. DOI: 10.1007/BF01874863.
  • Bonjoukhan, R.; Smitka, T. A.; Doolin, L. E.; Molloy, R. M.; Debono, M.; Shaffer, S. A.; Moore, R. E.; Stewart, J. B.; Patterson, G. M. L. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix Tjipanasesis. Tetrahedron 1991, 47, 7739–7750. DOI: 10.1016/S0040-4020(01)81932-3.
  • Kiviranta, J.; Abdel-Hameed, A.; Sivonen, K.; Niemelä, S. I.; Carlberg, G. Toxicity of cyanobacteria to mosquito larvae-screening of active compounds. Environ. Toxicol. Water Qual. 1993, 8, 63–71. DOI: 10.1002/tox.2530080107.
  • Dembitsky, V. M.; Shkrob, I.; Rozentsvet, O. A. Fatty acid amides from freshwater green alga Rhizoclonium Hieroglyphicum. Phytochemistry 2000, 54, 965–967. DOI: 10.1016/S0031-9422(00)00183-7.
  • Swain, S. S.; Paidesetty, S. K.; Padhy, R. N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–776. DOI: 10.1016/j.biopha.2017.04.030.
  • Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 2018, 36, 1255–1273. DOI: 10.1016/j.biotechadv.2018.04.004.
  • Gupta, V.; Ratha, S. K.; Sood, A.; Chaudhary, V.; Prasanna, R. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res. 2013, 2, 79–97. DOI: 10.1016/j.algal.2013.01.006.
  • Pratt, R.; Oneto, J. F.; Pratt, J.; American, S.; Jul, N.; Pratt, R.; Oneto, J. F.; Pratt, J. Studies on Chlorella Vulgaris. X. influence of the age of the culture on the accumulation of chlorellin. Am. J. Bot. 1945, 32, 405–408. DOI: 10.2307/2437358.
  • Thapa, S.; Bharti, A.; Prasanna, R. Algal biofilms and their biotechnological significance. In Algal Green Chemistry, 1st ed.; Rastogi R., Madamwar, D., Pandey, A., Eds.; Elsevier: Netherlands, 2017; 285–303.
  • Grzesik, M.; Romanowska-Duda, Z.; Kalaji, H. M. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix Viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 2017, 55, 510–521. DOI: 10.1007/s11099-017-0716-1.
  • Navarro, F.; Forján, E.; Vázquez, M.; Toimil, A.; Montero, Z.; Ruiz-Domínguez, M. C.; Garbayo, I.; Castaño, M. Á.; Vílchez, C.; Vega, J. M. Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa Onubensis. Phycol. Res. 2017, 65, 38–43. DOI: 10.1111/pre.12158.
  • Khan, Z.; Kim, Y.; Kim, S.; Kim, H. Observations on the suppression of root-knot nematode (Meloidogyne Arenaria) on tomato by incorporation of cyanobacterial powder (Oscillatoria Chlorina) into potting field soil. Bioresour. Technol. 2007, 98, 69–73. DOI: 10.1016/j.biortech.2005.11.029.
  • Matamoros, V.; Rodríguez, Y. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: a laboratory scale study. J. Hazard. Mater. 2016, 309, 126–132. DOI: 10.1016/j.jhazmat.2016.01.080.
  • Becher, P. G.; Keller, S.; Jung, G.; Süssmuth, R. D.; Jüttner, F. Insecticidal Activity of 12-epi-hapalindole J Isonitrile. Phytochemistry 2007, 68, 2493–2497. DOI: 10.1016/j.phytochem.2007.06.024.
  • Faria, M. S.; Nogueira, A. J. A.; Soares, A. M. V. M. The use of Chironomus Riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems. Ecotoxicol. Environ. Saf. 2007, 67, 218–226. DOI: 10.1016/j.ecoenv.2006.11.018.
  • Panda, D.; Himes, R. H.; Moore, R. E.; Wilson, L.; Jordan, M. A. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin. Biochemistry 1997, 36, 12948–12953. DOI: 10.1021/bi971302p.
  • Schwartz, E.; Hirsch, C. F.; Sesin, D. F.; Flor, J. E.; Chartrain, M.; Fromtling, E.; Harris, G. H.; Salvatore, M. J.; Liesch, J. M.; Yudin, K. Pharmaceuticals from cultured algae. J. Ind. Microbiol. 1990, 5, 113–124. DOI: 10.1007/BF01573860.
  • Duke, S. O.; Cantrell, C. L.; Meepagala, K. M.; Wedge, D. E.; Tabanca, N.; Schrader, K. K. Natural toxins for use in pest management. Toxins (Basel) 2010, 2, 1943–1962. DOI: 10.3390/toxins2081943.
  • Frankmölle, W. P.; Knübel, G.; Moore, R. E.; Patterson, G. M. L. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena Laxa. II. Structures of laxaphycins A, B, D and E. J. Antibiot. 1992, 45, 1458–1466. DOI: 10.7164/antibiotics.45.1458.
  • Méjean, A.; Paci, G.; Gautier, V.; Ploux, O. Biosynthesis of anatoxin-A and analogues (anatoxins) in cyanobacteria. Toxicon 2014, 91, 15–22. DOI: 10.1016/j.toxicon.2014.07.016.
  • Höckelmann, C.; Becher, P. G.; Reuß, S. H. V.; Jüttner, F. Sesquiterpenes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Z. Naturforsch 2009, 64, 49–55. DOI: 10.1515/znc-2009-1-209.
  • Falch, B. S.; Koenig, G. M.; Wright, A. D.; Sticher, O.; Ruegger, H.; Bernardinelli, G. Ambigol A and B□: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella Ambigua. J. Org. Chem. 1993, 58, 6570–6575. DOI: 10.1021/jo00076a013.
  • Raveh, A.; Carmeli, S. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J. Nat. Prod. 2007, 70, 196–201. DOI: 10.1021/np060495r.
  • Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F. J.; Cifuentes, A.; Ibáñez, E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus Pluvialis microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. DOI: 10.1016/j.jpba.2009.03.014.
  • Khatoon, H.; Haris, N.; Banerjee, S.; Rahman, N. A.; Begum, H.; Mian, S.; Abol-Munafi, A. B.; Endut, A. Effects of different salinities on the growth and proximate composition of Dunaliella sp. isolated from South China Sea at different growth phases. Process Saf. Environ. Prot. 2017, 112, 280–287. DOI: 10.1016/j.psep.2017.04.010.
  • Matos, Â. P.; Ferreira, W. B.; Torres, R. C. O.; Morioka, L. R. I.; Canella, M. H. M.; Rotta, J.; Silva, T.; Moecke, E. H. S.; Sant’Anna, E. S. Optimization of biomass production of Chlorella Vulgaris grown in desalination concentrate. J. Appl. Phycol. 2015, 27, 1473–1483. DOI: 10.1007/s10811-014-0451-y.
  • Zhou, W.; Li, Y.; Gao, Y.; Zhao, H. Nutrients removal and recovery from saline wastewater by Spirulina Platensis. Bioresour. Technol. 2017, 245, 10–17. DOI: 10.1016/j.biortech.2017.08.160.
  • Morais, M. G.; Morais, E. G.; Vaz, B. S.; Costa, J. A. V. Industrial effluents as a nutritional source in microalgae cultivation. Mini Rev. Org. Chem. 2014, 17, 1–7.
  • Klein, B. C.; Bonomi, A.; Maciel Filho, R. Integration of microalgae production with industrial biofuel facilities: a critical review. Renew. Sustain. Energy Rev. 2018, 82, 1376–1392. DOI: 10.1016/j.rser.2017.04.063.
  • Vermuë, M. H.; Eppink, M. H. M.; Wijffels, R. H.; Van Den Berg, C. Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 2018, 36, 216–227. DOI: 10.1016/j.tibtech.2017.10.011.
  • Correa, D. F.; Beyer, H. L.; Possingham, H. P.; Thomas-Hall, S. R.; Schenk, P. M. Biodiversity impacts of bioenergy production: microalgae vs. first generation biofuels. Renew. Sustain. Energy Rev. 2017, 74, 1131–1146. DOI: 10.1016/j.rser.2017.02.068.
  • Corato, U.; Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: a review. Renew. Sustain. Energy Rev. 2018, 88, 326–346. DOI: 10.1016/j.rser.2018.02.041.
  • Duarte, J. H.; Costa, J. A. V. Synechococcus Nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresour. Technol. 2017, 241, 21–24. DOI: 10.1016/j.biortech.2017.05.064.
  • Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. DOI: 10.1007/s12010-009-8866-7.
  • Rosa, G. M.; Moraes, L.; Cardias, B. B.; Souza, M. R. A. Z.; Costa, J. A. V. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour. Technol. 2015, 192, 321–327. DOI: 10.1016/j.biortech.2015.05.020.
  • Chen, L.; Zhu, T.; Fernandez, J. S. M.; Chen, S.; Li, D. Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture. Algal Res. 2017, 27, 311–317. DOI: 10.1016/j.algal.2017.09.023.
  • Ma, X.; Zheng, H.; Addy, M.; Anderson, E.; Liu, Y.; Chen, P.; Ruan, R. Cultivation of Chlorella Vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresour. Technol. 2016, 207, 252–261. DOI: 10.1016/j.biortech.2016.02.013.
  • Liu, T.; Liu, F.; Wang, C.; Wang, Z.; Li, Y. The boosted biomass and lipid accumulation in Chlorella Vulgaris by supplementation of synthetic phytohormone analogs. Bioresour. Technol. 2017, 232, 44–52. DOI: 10.1016/j.biortech.2017.02.004.
  • Andrade, M. R.; Costa, J. A. V. Cultivo da Microalga Spirulina Platensis em fontes alternativas de nutrientes. Ciênc. Agrotec. 2008, 32, 1551–1556. DOI: 10.1590/S1413-70542008000500029.
  • Mariano, A. P.; Dias, M. O. S.; Junqueira, T. L.; Cunha, M. P.; Bonomi, A.; Filho, R. M. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects. Bioresour. Technol. 2013, 135, 316–323. DOI: 10.1016/j.biortech.2012.09.109.
  • Freitas, B. C. B.; Brächer, E. H.; Morais, E. G.; Atala, D. I. P.; Morais, M. G.; Costa, J. A. V. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. Environ. Technol. 2017, 3330, 1–9. DOI: 10.1080/09593330.2017.1417491.
  • Freitas, B. C. B.; Cassuriaga, A. P. A.; Morais, M. G.; Costa, J. A. V. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella Minutissima. Bioresour. Technol. 2017, 238, 248–253. DOI: 10.1016/j.biortech.2017.04.031.
  • Yu, K. L.; Show, P. L.; Ong, H. C.; Ling, T. C.; Chi-Wei Lan, J.; Chen, W.-H.; Chang, J.-S. Microalgae from wastewater treatment to biochar – feedstock preparation and conversion technologies. Energy Convers. Manag. 2017, 150, 1–13. DOI: 10.1016/j.enconman.2017.07.060.
  • Lu, Y.; Xu, J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282. DOI: 10.1016/j.tplants.2015.01.006.
  • Park, W.; Yoo, G.; Moon, M.; Kim, C. W.; Choi, Y.-E.; Yang, J.-W. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 2013, 171, 1128–1142. DOI: 10.1007/s12010-013-0386-9.
  • Gleason, F. K.; Case, D. E. Activity of the natural algicide, cyanobacterin, on angiosperms. Plant Physiol. 1986, 80, 834–837. DOI: 10.1104/pp.80.4.834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.